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Abstract 

The impact of climate change on agriculture depends on the environmental and 
socio-economic contexts in which the changes occur. However, current tools to 
anticipate climate change impacts focus almost entirely on biological and 
environmental processes. For example, most large-scale crop models can identify 
where yields are sensitive to new temperatures and CO2 concentrations but do not 
include any socio-economic factors that may enable (or inhibit) farmers’ abilities to 
adapt. To address this gap, this paper uses national scale socio-economic, 
meteorological and agricultural data to identify socio-economic factors that have 
made rice, maize and wheat production resilient and sensitive to past droughts.  
Results suggest that cereal harvests in countries undergoing economic and political 
transition are most vulnerable to droughts and that factors related to investments in 
the agriculture sector (such as the amount of fertilizer used by farmers or the amount 
of Gross Domestic Product produced by a nation’s agricultural sector) help reduce 
vulnerability.  While results are limited by data quality and availability, this study 
provides preliminary quantitative insights that highlight important areas for further 
research on the socio-economic factors that create vulnerability to climate change. 
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1.  Introduction 

 

A large and growing body of research shows that socio-economic factors can be as 
important as the magnitude of a climatic event in determining the impact of 
environmental change on agriculture (Fraser et al., 2003; Patt and Gwata, 2002). 
However, there are no clear-cut procedures to characterise human coping and 
adaptation mechanisms as these vary from place to place. For example, droughts 
are slow-onset phenomena with a relatively high level of predictability compared to 
most other environmental stressors (e.g. flood or storm events that emerge relatively 
quickly and with little – if any – warning). This means that many drought impacts, 
such as crop failures, could, theoretically, be avoided with preparedness and 
appropriate response mechanisms.  As a result, to anticipate where climate change 
may affect yields, impact models should integrate environmental factors, such as 
available water and temperature that directly affect yield, with socio-economic factors 
that encourage pro-active adaptation.  

At the farm level, this means researchers need to identify those human factors that 
allow farmers the opportunity to overcome periods of drought.  This may include 
things such as access to labour or capital that a farmer may use to adapt to climatic 
problems.  At larger spatial scales, research on human factors includes identifying 
the economic and governance systems that help enhance (or undermine) the 
adaptive capacity of entire regions (Devereux, 2009). The importance of human 
factors in determining climate impacts is highlighted in the literature on climate 
vulnerability that views vulnerability as a dynamic concept defined in relation to an 
external stressor or an undesirable outcome (Füssel and Klein, 2006). More 
specifically, climate vulnerability is defined by the Intergovernmental Panel on 
Climate Change (2001) as arising when some ecosystem service, such as food 
production, is (1) exposed to changing climatic conditions; (2) limited in its ability to 
adapt to these conditions; and (3) sensitive to these changes. Smit and Wandel 
(2006), Adger (2006), and Folke (2006) all develop these ideas and stress that in 
addition to exposure, sensitivity and adaptive capacity, vulnerability is also a function 
of a system’s resilience, i.e. its ability to both absorb a shock as well as its ability to 
recover after being exposed to a stress.  

Despite the wide spread awareness in the literature that socio-economics is 
important in determining the resilience, sensitivity and adaptive capacity of 
production systems, human factors do not feature strongly in many discussions on 
impacts of climate change on agriculture production (Yearley, 2009). For example, in 
the IPCC’s report “Impact, Adaptation and Vulnerability”, the chapter on food and 
fibre presents crop yield-projections that are based on modelling the biological 
potential of crops to grow under future climates. The results do not include the 
capacity of farmers to adapt to such changes (Easterling et al., 2007; Füssel and 
Klein, 2006).  
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There are several practical and intellectual challenges that must be overcome before 
scholars will effectively be able to integrate the socio-economic and environmental 
factors that affect crop yield. Firstly, crop-climate and socio-economic data exist on 
different spatial and temporal scales (Adger et al., 2005; Hulme et al., 1999; Vincent, 
2008). For example, crop and climate data are generally quantitative as compared 
with socio-economic data that are typically more qualitative. In contrast, when 
quantitative socio-economic (census) data are available, indicators are usually 
aggregated to administrative scales at an annual resolution, averaging out regional 
inter-annual variability. Therefore, while a single-level (census) data may provide an 
entry point for examining the contextual issues that are associated with vulnerability 
(Brooks et al., 2005), more than one resolution is required to characterise the 
multilevel and multi-scale natures of vulnerability or adaptation (Janssen et al., 
2007).  

Secondly, crop, climate and socio-economic models make different assumptions 
about the behaviour of economic actors. In the crop models used to estimate the 
impact of climate change on yields, farmers' adaptation is usually treated quite 
simply (See Challinor et al., 2009a for a review of current trends in crop-climate 
models). Generally speaking, crop-climate models either assume that farmers will 
not make any changes in crops/cultivars grown (thus over-estimating the impact of 
changes in climate) or assume that farmers will use management practices that are 
ideally suited to new climatic conditions (this under-estimates the impact of climate 
change) (Füssel and Klein, 2006; Kandlikar and Risbey, 2000). Similarly, in most 
integrated socio-economic models of climate and agriculture, land managers are 
viewed as profit-maximisers (Cooke et al., 2009) in markets at equilibrium 
(Mendelsohn, 2007).  From this perspective, harvests’ sensitivity to climate is 
indirectly reflected in price or income volatility (Ahmed et al., 2009). Again, this 
approach fails to capture the way in which socio-economic factors may encourage or 
inhibit farmer adaptation.  As such, some recent work has begun by examining the 
effects of climate change if farmers switch to “non-ideal” crops as a way of 
estimating the impact of climate change depending on a range of possible farmer 
responses (e.g. Challinor et al., 2009b).  

Therefore, given the (1) spatial and temporal incompatibility of available socio-
economic, biological and environmental data, and the (2) difficulties with generalising 
human  behaviour, most integrated studies on food security and climate change 
rarely stretch outside community-levels (Patt and Siebenhüner, 2005). This 
discussion has led Brooks et al. (2005) to call for scholars working on vulnerability to 
distinguish between “context specific” and “generic” vulnerability.  Considerable effort 
has already been invested in “context specific vulnerability” and there are many 
published studies that illustrate how climatic impacts will depend on specific local 
contexts (E.g. Misselhorn, 2005). By contrast, to date there have been only a few 
attempts to employ mathematical or statistical methods to identify indicators of 
generic vulnerability at larger spatial scales (Allison et al., 2009; Brooks et al., 2005; 
Fraser et al., 2008; Liu et al., 2008; Reidsma et al., 2009).  
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The main aim of the current paper is to examine these issues at the global scale 
using national data to identify the socio-economic factors that are statistically 
significant in indentifying the relation between cereal (rice, wheat and maize) losses 
and drought. Specifically, this paper builds on previous work done on “generic 
vulnerability” by Simelton et al. (2009). The previous work was carried out at sub-
national scale using data from Chinese provinces as an early attempt to bring 
together both the environmental and socio-economic factors that made crop 
production vulnerable to drought. This previous work concluded that farm inputs, i.e. 
variables representing land, labour or capital, were associated with vulnerability to 
drought where drought was defined as occurring in years when the rainfall during the 
growing season was below average (Fraser et al., 2008; Simelton et al., 2009). For 
the purpose of the current paper, two methodological advances have been made to 
previous work. Firstly, the drought index has been refined and is now based on soil 
moisture to account for the capacity of soils to buffer variations in rainfall. Secondly, 
the vulnerability index is used to construct linear mixed-effects models of 
vulnerability to drought at the national scale as a function of specific socio-economic 
conditions accounting for different governance, income and agro-ecological zones. 
While analyses at this scale are by necessity crude, this work represents an 
important step towards understanding the combined effects of socio-economic 
context and environmental changes on crop productivity.   

 

2.  Data & Methods 

The availability of data at the global scale to address climate change vulnerability is 
limited. This paper, therefore, proceeds by first outlining the available data (section 
2.1), then justifying the methods and describing the methodological steps undertaken 
to derive the vulnerability index (section 2.2) and, finally, outlines the data analysis 
procedures (section 2.3).  

 

2.1 Data and data preparation    

 

Soil moisture data 

Monthly soil moisture data was obtained from an established global hydrological 
model (GHM), Mac-PDM.09 (Gosling and Arnell, 2010; Gosling et al., 2010; Arnell, 
1999). Mac-PDM.09 was driven with 0.5°x0.5 °gridded  monthly CRU TS3 
meteorological inputs for the period 1989/90 to 2004/05. A gridded map of the 
earth’s landmass was used to mask out soil moisture for only those grid cells that 
had >1% of the land base devoted to producing rice, wheat or corn (Leff et al., 2004). 
For each selected grid and for each year, total soil moisture was determined for the 
period October of one year to October of the following year. Using this data, the 
average national-scale soil moisture was computed for each growing season from 
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the selected grids cells. With regard to our selection of the October to October 
period, it is important to note that some studies recommend different lengths of 
drought-periods.  For example, soil moisture fluctuates so much in the tropics that 
droughts may emerge and dissipate in less than six months, while droughts many 
take over twelve months to emerge in Sub-Saharan Africa and in high northern 
latitudes (Erigayama et al., 2009). To address this issue, we tested a number of 
different combinations of months to calculate soil moisture but found that this had 
little effect on the overall results (This is similar to what was found by Lobell and 
Field, 2007).  Therefore, the period October-October was chosen since it combines 
the southern and northern hemisphere growing seasons for harvests to be recorded 
for the same year (Leff et al., 2004).  

 

Harvest data 

National level crop production data was obtained for rice, wheat and maize harvests 
from the United Nations Food and Agriculture Organization’s FAOSTAT online 
database (FAO, 2008) for each year between 1986-2005.  

 

Socio-economic data   

To analyse the socio-economic factors that explain drought impacts on harvests we 
made use of the following types of data (Alcamo et al., 2008; Brooks et al., 2005): 

(1)  To test hypotheses that access to farm inputs explain trends in harvest 
vulnerability, national socio-economic data were obtained from a number of 
online databases (EarthTrends, 2008; FAO, 2008; The World Bank Group, 
2008).  Six continuous variables were selected to represent access to land 
labour and capital based farm inputs (see Table 1).  

(2) Each country was grouped based on average income, type of governance 
and agro-environmental zone. Each of these three indicators has four levels. 
The income groupings follow the World Bank’s classification based on the 
average GDP per capita in 2008:  low income, lower income, upper middle, or 
high income (World Bank, 2009). Governance categories were taken from the 
Economist Intelligence Unit’s 2008 assessment that divides countries into 
authoritarian regimes, hybrid regimes, flawed democracies and full 
democracies (The Economist, 2009). Countries were categorized as 
belonging to one of Köppen’s climate zones (Kottek et al., 2006) based on 
whether the largest share of the cropland area fell in either tropical, arid, 
temperate or cold climate conditions.  

< Table 1. Data used in this analysis > 

 

Data quality and data preparation 
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The lack of complete time-series high quality socio-economic data is well 
acknowledged in the literature. The United Nations databases, such as those used in 
this study, are the only databases available that have time-series data of agricultural 
and socio-economic factors. Data quality vary as countries may use different 
approaches for compiling data (Hafner, 2003; Rudel et al., 2009). These limitations 
influenced the selection of variables used in this study. For instance, we only used 
data from the past 16 years because: 1) the data quality for many developing 
countries is assumed to have improved over time, and, 2) this period marks a new 
era with many new states emerging around 1990. Hence, analysing older data may 
not contribute to understanding of current vulnerability.  

Even by restricting our analysis to the last 16 years, data sets still had occasional 
missing values that were replaced using the spline interpolation procedure whereby 
a locally weighted regression produces a smooth shape in the vicinity of the missing 
data and the missing value is estimated from this function (Crawley, 2007). Data 
points that were missing from either the beginning or end of the time series were 
replaced by linear back-/forecasted values when fewer than four years were missing 
and no more than one extrapolated data point exceeded the observed data range.  

All variables were log-transformed to reduce heteroscedasticity and the influence of 
extreme values. 

 

2.2 Method for calculating the vulnerability index  

To bring these data together and evaluate how different socio-economic factors 
affect the vulnerability of cereal crops to drought, we followed an approach 
developed by Fraser who analyzed the relationship between food security and 
drought  (see: Fraser, 2007; Fraser et al., 2008; Simelton et al., 2009).  Briefly, this 
work conceptualises vulnerability in terms of “exposure to climatic events”, measured 
in this paper as drought severity (the Drought Index, DI), versus the “impact of the 
drought”, measured in terms of crop losses (the Crop Failure Index, CFI). Cases 
where relatively severe droughts are not associated with significant crop losses are 
considered “resilient” to the drought and cases where minor droughts are associated 
with major crop losses are considered “sensitive” to the drought. Taken together, the 
impact of a drought relative to the size of the drought becomes the “vulnerability 
index”. We hypothesise that different levels of vulnerability may be due to the 
underlying socio-economic conditions in a specific region, as these conditions may 
influence farmers’ “adaptive capacity”.  Therefore, the crop-specific vulnerability 
index (VI) is defined as a crop failure index (CFI) divided by a drought index (DI), and 
was calculated for each country in each year, i (eqn 1): 
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(1) There were two steps in calculating the crop failure index (CFI).  First, harvest 
data for each country was smoothed using an fourth order auto-regression model 
(Schneider and Neumaier, 2001; Simelton et al., 2009). Three year-lags was used 
for a few countries with limited time series to increase the number of countries 
included in the analysis. As four years are lost to the smoothing procedures the 
remaining period 1990-2005 refers to the effective dataset. In total, this meant that 
the harvest data covered 102 rice producing countries, 112 wheat producing 
countries, and 127 maize producing countries.  This smoothed harvest produced an 

estimate of the "expected" value of the harvest, Ĥ , taking into account multi-year 

temporal trends.  Second, for each country and for each crop, the smoothed 

harvest, Ĥ , were divided by actual harvests, H, recorded by the FAO data. This 
means that a CFI of 1 refers to a year in which the actual harvest was the same as 
expected, or the harvest was “normal”. Higher CFIs indicate larger crop failures. 

(2) The drought index (DI) was computed in a similar manner.  First, for each country 
in each year soil moisture content, SMC, was estimated from averaging the October-
October soil moisture for all the grid cells in a given country that had been identified 
as cultivating more than 1% of the particular crop.  This, therefore, resulted in 
different SMC values for rice, maize and wheat as each of these crops has different 
spatial distribution in each country. Second, and since there were no long-term 
trends, soil moisture data was smoothed using a linear regression model.  Third, for 

each country and each year the smoothed soil moisture, CMS ˆ , was divided by the 
actual soil moisture, SMC.  This created a drought index (DI) where a year with 
“normal soil moisture” has a DI of 1, and the higher the DI, the lower the soil 
moisture available for each crop. 

(3) The vulnerability index (eq. 1) is constructed by dividing the CFI by the DI so that 
higher the VI value, the higher the vulnerability to drought.  

 

2.3 Explaining the vulnerability of crops to drought 

To determine if socio-economic factors influenced the vulnerability of each of the 
three crops’ harvests to drought, only those years when the cumulative October - 
October soil moisture was below average were selected for this analysis (i.e. when 
DI>1). For each of these years, the following steps were undertaken: 

(1) To compare differences in mean vulnerability among the different groups of 
countries, we undertook Duncan’s post-hoc test to determine homogeneity in mean 
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vulnerability within-groups. This was done for all crops taken together and separately 
for each crop. The significance level was set to α<0.05.  

(2) For each crop, a separate Linear Mixed Effects Model (LME) was designed with 
the log-transformed vulnerability index (VI, eq. 1) as the dependent variable. The 
model variables included the fixed effects: population density, rural population, 
fertiliser, GDP in agriculture, Cropland per capita, cereal intensity, agroenvironment 
(tropical, arid, temperate, cold), income (low, lower middle, upper middle, high) and 
governance (autocratic, hybrid, flawed, full). Country was included as a random 
effect to take into account random differences between countries on the overall 
intercept.  The model was fitted with all fixed effects and up to two-way interactions.  
Model simplification was undertaken by comparing models (fitted using maximum 
likelihood) with and without the terms using Likelihood Ratio Tests.  In this, we 
removed insignificant interactions and main effects until all remaining terms (or their 
marginal interaction effects) were significant. 

Factor levels were merged when the coefficients for both were non-significant and 
had similar affects on interactions and the intercept. To obtain estimates of 
coefficients, the minimal adequate model was then fitted using restricted maximum 
likelihood (REML) method. The contrast coefficients for each factor and group 
interactions add up to zero. The models were tested for heteroscedasticy. 
Autocorrelation in residuals was not considered a problem as only the years with 
DI>1 were used, hence the time series are incomplete. Year was included as a factor 
but was non-significant for each of the crops. Statistical analyses and mapping were 
carried out in R using the “LME” and “rworldmap” packages. 

 

3. Results 

First, we report on the geographical distribution of vulnerability to drought and show 
what types of countries are more vulnerable and where they are located.  Second, 
we present the LME models of vulnerability to drought for rice, wheat and maize. 

3.1 Geographic distribution of vulnerability by crop, and income, governance 
and agro-environmental group  

The average VIs during years with below normal rainfall during the growing season 
for rice, wheat and maize are shown in Figure 1a-c. The maps point out three 
possible regions of particular concern: a vulnerable triangle between southern, 
eastern and northwest Africa, some former Soviet Union-states along the borders of 
Europe and central Asia, and northern parts of South America.  

In terms of the characteristics of different countries with different levels of 
vulnerability the following results stand out:  

1. In terms of climate, tropical agro-environments had the lowest mean 
vulnerability index across all three crops. The most vulnerable crops were rice 
and wheat in cold countries and maize in arid agro-environments. The arid 
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zones also had the highest standard deviation in terms of the vulnerability 
index.   

2. For governance, countries with authoritarian and hybrid regimes had the 
overall highest average vulnerability.  

3. For income levels, the two middle income groups were the most vulnerable.   

In terms of crop-specific results, the following observations stand out:  

1. In terms of rice vulnerability, authoritarian and cold agro-environments were 
most vulnerable while hybrid regimes and low income countries had the 
lowest mean vulnerability.  

2. For wheat, flawed democracies and cold agro-environments had the highest 
mean vulnerability, while low income countries had the lowest vulnerability.  

3. For maize, flawed democracies, low and upper middle income countries had 
the highest mean vulnerability, and tropical agro-environments the lowest 
vulnerability.  

Additional details on the interactions between variables and the significance of 
different variables is available in supplementary table 1 and supplementary figure 1.   

 

<Figure 1.>   

<Figure 2.> 

 

3.2 Linear mixed-effects models of vulnerability for rice, wheat and maize 
Table 2 summarises the overall significant effects of the LME models, including the 
interactions between variables (see also the last two columns of Supplementary 
table 1). In particular, the following socio-economic factors were identified as 
significant in explaining trends in rice wheat and maize harvest vulnerability to 
drought: 
 

1. In the case of rice, the overall effect of the amount of GDP generated by a 
country’s agricultural sector and the intensity of cereal cultivation were both 
significant in reducing vulnerability.  The way that cereal intensity affected 
vulnerability, however, varied depending on the country’s agro-ecological 
zone. Cereal intensity had the strongest effect on reducing vulnerability in cold 
countries, whereas in tropical countries, the effect of cereal intensity on 
vulnerability was negligible (these interactions are indicated in the bottom 
rows and last column of Supplementary table 1a). 

2. In the case of wheat, the amount of GDP generated by a country’s agricultural 
sector was significant in reducing vulnerability. The exact nature of this effect, 
however, depended on the country’s government type and agro-ecological 
zone.  In particular, agricultural GDP increased vulnerability in flawed and full 
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democracies while it decreased vulnerability in autocratic and hybrid regimes.  
Similarly, agricultural GDP increased the vulnerability of wheat harvests to 
drought in tropical and cold climates while it decreased vulnerability in arid 
and temperate countries.  

3. For maize a large number of significant effects and interactions were 
observed. Key results include that maize harvests were significantly less 
vulnerable to drought in countries where fertilizer use, agricultural GDP and 
cereal intensity were all high but were more vulnerable in countries where 
rural populations were low.  Notable exceptions to these trends include 
countries with flawed or full democracies.  In these countries, GDP in 
agriculture, rural populations and cereal intensity are all associated with 
increased vulnerability.  These same three factors are, however, associated 
with decreased vulnerability in countries with autocratic or hybrid 
governments. To further illustrate this, figure 3 presents the impact of GDP on 
maize vulnerability alone, keeping the other variables constant. This 
demonstrates that GDP in agriculture has an overall negative effect on 
vulnerability but that this effect is strongest in full democracies (significant 
decrease in vulnerability) and hybrid regimes (significant increase in 
vulnerability). For flawed democracies there is no significant difference from 
the overall mean relationship with GDP.   

 

< Table 3. >  

< Figure 3. >  

 

4. Discussion 

 

This paper provides insights into three empirical questions:  (1) Where in the globe 
are cereal crops most vulnerable to drought? (2) What are some of the underlying 
socio-economic conditions that contribute to drought-harvest vulnerability? And (3) 
what implications might these results have in terms of policy to enhance adaptive 
capacity?  Finally, the methods used in this paper point towards how socio-economic 
and crop-climate models may be integrated in future research.   

 

4.1 Where are cereal harvests most vulnerable to drought? 

This study shows that the lowest mean crop-drought vulnerability is found in tropical 
agro-environments, hybrid regimes, and low income levels, such as Cambodia, 
Guatemala and Ghana. In contrast, the highest mean vulnerability to drought is 
found in cold agro-environments, middle income level countries, and flawed 
democracies such as the Ukraine and Moldova.  The high vulnerability of cold 
countries may be due to the fact that grain cultivation in higher latitudes is closer to 
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the ecological margins tolerated by these crops.  In addition, high latitude countries 
have predominantly rainfed agriculture while grain cultivation in countries at low 
latitudes typically is irrigated (e.g. the Nile). Hence, tropical cereal crops may be 
better buffered against droughts in these regions as long as water is available for 
irrigation.  Arid zones are more vulnerable than tropical zones and also had the 
highest variability in vulnerability for all crops, in particular for maize. Again, this may 
be due to the fact that cultivation in these countries is close to an ecological 
threshold so relatively minor changes in soil moisture have commensurately large 
effects.  The high vulnerability in arid countries, therefore, contrasts with the 
comparatively low vulnerability to drought in tropical zones where water resource 
management may be  more crucial than water deficits (Evers and Benedikter, 2009).  

 

4.2  What are the underlying socio-economic conditions that contribute to 
drought-vulnerability? 

 

Overall, high levels of GDP in agriculture, cereal intensity and fertiliser use are 
associated with lower vulnerability to drought. Since these are proxy indicators for 
the capital resources available to a farmer, one interpretation of these results is that 
financial capital is significant in enhancing adaptive capacity. An alternative 
explanation is that weather forecasts are better in countries with high capital input in 
agriculture and this helps buffer harvests from drought. The findings also indicate 
more subtle and complex relationships, particularly in the case of maize that is grown 
under very diverse circumstances across the world. For example, higher levels of 
GDP in agriculture were associated with increased vulnerability in low income 
countries but reduced vulnerability in hybrid regimes. Moreover, large rural 
populations are significantly associated with reduced vulnerability in hybrid regimes.  
One interpretation of this is that high vulnerability countries may be undergoing an 
agricultural transition.  In particular, it may be that in these countries farmers still rely 
on labour-intensive agricultural management but that labour is not available because 
it has been drawn away from agriculture and into industry. Similarly, the high 
vulnerability observed in middle income countries may be because agricultural 
modernisation is not yet fully implemented in such regions and this makes it difficult 
for farmers to adapt to changes in soil moisture.  

As a result, we feel that one of the most striking results of this research is that 
vulnerability is low in both rich and poor countries but high for the middle income 
countries. From this we hypothesize that the low vulnerability of the poorest 
countries may be because farmers in these countries are still using traditional 
farming practices and have well-established adaptation strategies. The highest 
income countries may have low vulnerability because they may have ample financial 
reserves with which to adapt. The middle income countries, however, may neither 
have the financial nor traditional coping strategies in place.  Exploring this issue is a 
likely avenue for future research and suggests that it is farmers in countries in 
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economic transition - and not the poorest (as suggested by the Millennium 
Development Goals (2008)) - who may be most vulnerable to droughts. 

 

4.3  What implications does this have for policy? 

 

Results presented here suggest it is misguided to assume that programmes to 
reduce poverty, make farm inputs more accessible, or increase democracy will 
necessarily reduce vulnerability to climate change. Rather the effect of any of such 
programmes will depend on the political and economic context of the country.  More 
specifically, the socio-environmental context can change the sign of a relationship 
(e.g. Fig 3), suggesting that policy interventions may have reversed outcomes 
depending on the situation. These results, therefore, are somewhat at odds with 
community-scale work that has explored vulnerability and concluded that the poor 
are necessarily the most vulnerable (Gbetibouo and Ringler, 2009). Instead, the 
results presented here suggest that - at a national scale - it seems to be countries in 
transition that are most vulnerable. If institutional support is unpredictable in such 
regions then harvests may be especially vulnerable to a "double exposure" of 
economic/political and climatic uncertainty (Eakin, 2005; O'Brien and Leichenko, 
2000). If this is true (and more research is needed to demonstrate this point 
conclusively) climate change adaptation policy needs to be built on debates around 
social vulnerability and entitlement that explores how people in different contexts 
adapt to the same climatic exposure (Adger, 2006).  Taken together, therefore, 
results suggest that policy geared at reduced harvest vulnerability to drought needs 
to, at the very least, be sensitive to the wealth, ecology, and government as well as 
the type of crop that is being considered.   

 

5.  Conclusion 

 

One likely effect of climate change is that many regions around the world are 
projected to experience more frequent and more intense droughts.  Predicting 
whether these new droughts will impact harvests, however, is difficult.  Oftentimes, 
rainfall deficits are one of many factors that contribute to crop failure, because 
farmers operate within socioeconomic structures that increase to their vulnerability to 
such weather anomalies. As a result, it is important to understand the socio-
economic contexts that make harvests vulnerable droughts. Results show that 
countries with low populations and wealthy economies had lower vulnerability to 
drought and that upper middle income countries were more vulnerable than both low 
and high income countries. Furthermore, ‘authoritarian’ and ‘flawed’ democracies (as 
defined by “The Economist”) were more vulnerable than ‘hybrid regimes’ and ‘full 
democracies’. Since many of the world’s countries are in economic transition and 
depend on self-sufficiency in grain for a growing population, one implication of this 
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research is that being prepared for future droughts means ensuring stable 
agricultural development to reduce vulnerability.  

 



17 

 

Table 1. Explanatory variables used in the linear mixed-effects models for 
vulnerability to drought 

Type of 
indicator 

 Data Unit Source Proxy for 

 Governance  
Authoritarian regimes (A),  
Hybrid regimes (B),  
Flawed democracies (C), 
Full Democracies (D) 

n/a Economist 
Intelligence 
Unit 20081 

Governance style 

 Agroenvironment 
Tropical (A),  
Dry (B),  
Temperate (C),  
Cold (D) 

n/a Köppen2 Climatic suitability, associated 
meteorological disturbance, 
agro-environment 

Discrete 
variables 

 Income level 
Low level (A),  
Lower Middle level (B),  
Upper Middle level (C),  
High Income level (D) 

n/a World Bank3 Stage in economic 
development 

 Population density per 
ha permanent 
cropland 

People/ha  Earth 
Trends4, 
FAOSTAT5 

Population pressure; 
domestic demand Continuous 

population/ 
labour 

variable   Rural population % Earth 
Trends4 

Potential available rural 
labour 

 Permanent cropland 
per capita 

Ha/per capita FAOSTAT5 Land use intensity 

Continuous 
land 

variables  
 Cereal intensity 

Cereal area/harvested 
area 

Area of rice, 
wheat and 
maize of total 
harvested area 

FAOSTAT5 Importance of cereal crops of 
agricultural production 

 Fertiliser intensity Hg/ha FAOSTAT5 Degree of technical 
development, access to 
agricultural inputs Continuous 

economic 
variables   GDP in agriculture US$/capita World 

Development 
Indicators6 

Potential investments in 
agriculture, importance of 
agriculture 

Sources: 1) The Economist, 2009. 2) Kottek et al., 2006. 3) World Bank, 2009. 4) 
EarthTrends, 2008. 5) FAO, 2008. 6) The World Bank Group, 2008. 
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Table 2. ANOVAs tables for linear mixed effects models of vulnerability to 
drought for a) rice, b) wheat and c) maize. 

a) Rice Numerator 
DF 

Denominator 
DF 

F-value p-value  

Intercept 1 525 42249.71 <0.0001  

GDP in agriculture 1 525 4.19 0.0411  

Cereal intensity 1 525 0.45 0.5015  

Agroenvironment 3 81 2.73 0.0492  

Cereal 
intensity*Agroenvironment 

3 525 2.90 0.0344  

 

b) Wheat Numerator 
DF 

Denominator 
DF 

F-value p-value  

Intercept 1 563 26282.520  <0.0001  

GDP in agriculture 1 563 5.826  0.0161  

Agroenvironment 3 89 1.453  0.2328  

Governance 3 89 3.028  0.0336  

GDP*governance 3 563 2.803  0.0393  

GDP*agroenvironment 3 563 2.821  0.0383  

 

c) Maize Numerator 
DF 

Denominator 
DF 

F-value p-value  

Intercept 1 600 42160.71  <0.0001  

Fertiliser 1 600 5.79  0.0164  

GDP in agriculture 1 600 6.80  0.0093  

Rural population 1 600 12.14  0.0005  

Cereal intensity 1 600 8.10  0.0046  

Governance 3 97 3.59  0.0164  

Income level1 2 97 1.71  0.1864  

Agroenvironment 3 97 1.09  0.3583  

GDP*governance 3 600 0.19  0.9063  

RuralPop*governance 3 600 4.67  0.0031  

Cereal*governance 3 600 6.57  0.0002  

GDP*income1 2 600 5.47  0.0044  

Cereal*income1 2 600 1.47  0.2318  

Cereal*agroenv 3 600 7.89  <0.0001  
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1 Upper middle and high income levels were merged. 
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Supplementary Table 1. Coefficients for linear mixed effects models of 
vulnerability to drought for a) rice, b) wheat and c) maize. 

a) Rice Value Standard 
Error 

DF t-value p-value Overall 
intercept 

Slope 
modified 

by 
interaction 

Intercept 2.6144 0.1700  525 15.3827  0.0000   

GDP in agriculture -0.0535 0.0268 525 -1.9980   0.0462 2.561  

Cereal intensity -0.2202 0.0757 525 -2.9072   0.0038 2.394  

Tropical -0.4264 0.1453  81 -2.9347   0.0043 2.188  

Arid -0.4200 0.1508  81 -2.7837  0.0067 2.194  

Temperate -0.3506 0.1484  81 -2.3626   0.0205 2.263  

Cold 1.1966  0.1482 81 8.0742 0.0000 3.811  

Cereal *tropical 0.2240  0.0792 525 2.8298  0.0048  0.004 

Cereal*arid 0.2114 0.0829  525 2.5486   0.0111  -0.009 

Cereal*temperate 0.1669  0.0811 525 2.0592   0.0400  -0.053 

Cereal*cold -0.6023  0.0811 525 -7.4266 0.0000  -0.822 

 

b) Wheat Value Standard 
Error 

DF t-value p-value Overall 
intercept 

Slope 
modified 

by 
interaction 

Intercept 2.2776 0.1218 563 18.7031   0.0000   

GDP in 
agriculture 

-0.0651  0.0398 563 -1.6380   0.1020 2.213 

 

 

Tropical -0.4043  0.2523   89 -1.6024  0.1126 1.874  

Arid 0.3412 0.1792   89 1.9039   0.0602 2.619  

Temperate 0.1989  0.1532   89 1.2980  0.1977 2.477  

Cold -0.1358 0.1949 89 -0.6968  2.142  

 Autocratic 
regimes 

0.5379  0.2039   89 2.6375  0.0099 2.816  

Hybrid regimes -0.0228 0.2403   89 -0.0948  0.9247 2.255  

Flawed 
democracies 

-0.2542 0.1950   89 -1.3034  0.1958 2.024  

Full democracies -0.2610 0.2131 89 -1.2248  2.017  

GDP*autocratic -0.1636  0.0640  563 -2.5548  0.0109  -0.229 

GDP*hybrid 0.0071  0.0728  563 0.0976  0.9223  -0.058 
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GDP*flawed 0.0903 0.0643 563 1.4046   0.1607  0.015 

GDP*full 0.0662 0.0670 563 0.9880   0.001 

GDP*:tropical 0.1163  0.0764  563 1.5218  0.1286  0.051 

GDP*:arid -0.1284  0.0571 563 -2.2494  0.0249  -0.193 

GDP*temperate -0.0610  0.0492  563 -1.240  0.2157  -0.126 

GDP*cold 0.0731 0.0609 563 1.2003   0.008 

 

c) Maize Value Standard 
Error 

DF t-value p-value Overall 
intercept 

Slope 
modified 
by 
interaction 

Intercept 2.3762 0.2415  600 9.8378   0.0000   

Fertiliser -0.0471  0.0170 600 -2.7713   0.0058 2,423  

GDP in agriculture -0.1077 0.0511  600 -2.1061  0.0356 2,268  

Rural Population 0.1376  0.0737 600 1.8682   0.0622 2,514  

Cereal intensity -0.0337  0.0742 600 -0.4549   0.6493 2,342  

Autocratic regimes -0.4084  0.2918   97 -1.3995  0.1649 1.968  

Hybrid regimes -0.6174  0.2530   97 -2.4400   0.0165 1.759  

Flawed democracies 0.5983 0.2278   97 2.6260  0.0100 2.974  

Full democracies 0.4276 0.2575 97 1.6606  2.804  

Low income 0.8075  0.3225   97 2.5045  0.0139 3.184  

Lower middle income -0.3209 0.2350  97 -1.3653   0.1753 2.055  

Upper mid + High inc -0.4866  0,2717 97 -1.7909  1.889  

Tropical -0.0243 0.1115   97 -0.2176  0.8282 2.352  

Arid 0.4523 0.1122  97 4.0311  0.0001 2.828  

Temperate 0.2888 0.1165   97 2.4784  0.0149 2.665  

Cold -0.7168 0.1134 97 -6.3210 0.000 1.659  

GDP*autocratic -0.0640 0.0922 600 -0.6933  0.4884  -0.516 

GDP*hybrid 0.2667 0.0967 600 2.7570  0.0060  -0.725 

GDP*flawed -0.0212 0.0724 600 -0.2923  0.7702  0.490 

GDP*full -0.1817 0.0871 600 -2.0861   0.320 

RuralPop*autocratic 0.2443 0.1497 600 1.6318  0.1032  -0.270 

RuralPop*hybrid -0.2991 0.1157 600 2.5848  0.0100   -0.479 

RuralPop*flawed 0.0738 0.1029 600 0.7169  0.4737  0.736 

RuralPop*full -0.0190 0.1228 600 -0.1547   0.566 

Cereal*autocratic 0.1246  0.0922 600 1.3519  0.1769  -0.442 



22 

Cereal*hybrid 0.1551  0.0940 600 1.6503  0.0994  -0.651 

Cereal*flawed -0.3236  0.1044 600 -3.1011  0.0020  0.564 

Cereal*full 0.0440 0,0969 600 0.4541   0.394 

GDP*low inc -0.2144  0.0932  600 -2.2997   0.0218  0.700 

GDP*lower mid inc 0.0154  0.0665  600 0.2314  0.8171  -0.429 

GDP*upper+high inc 0.1991 0.0799 600 2.4919   -0.595 

Cereal*low inc -0.0862  0.0631  600 -1.3669  0.1722  0.774 

Cereal*lower mid inc 0.1336  0.0647  600 2.0660   0.0393  -0.355 

Cereal*upper+high 
inc 

-0.0474  0.0639 600 -0.7418   -0.521 

Cereal*tropical 0.0120  0.0614  600 0.1952    0.8453  -0.058 

Cereal*arid -0.2711  0.0640  600 -4.2345  0.0000  0.418 

Cereal*temperate -0.1511  0.0656 600 -2.3044   0.0215  0.255 

Cereal*cold 0.4102 0,0637 600 6.4400 0.0000  -0.751 
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 Figure 1.  Mean vulnerability 1990-2005 for a) rice, b) wheat, and c) maize. 

 

 

c) 
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Figure 2. Mean vulnerability during droughts for all three crops together and 
separately, by (1) agro-environment, (2) governance and (3) income level 
groupings.  For mean values, significant differences between groups and total 
number see supplementary table 1 and for box plot distributions for this graph 
see supplementary figure 1.  
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Figure 3. Main effect and interaction effects of GDP from agriculture on 
vulnerability to drought for maize when all other variables are kept constant.  
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Supplementary Figure 1. Distribution of the vulnerability index for rice (top 
row), wheat (middle row) and maize (bottom row) during droughts separated 
by governance type (left), agro-environment zone (centre) and income 
category (right) levels. The levels 1, 2, 3, 4 correspond to A, B, C, D and go 
from A for autocratic governance, tropical agro-environment, low income to D 
for full democracy, cold agro-environment, high income. See table 1 for 
descriptions of these variables and supplementary table 1 for differences 
between the groups. The boxplots show the median (horizontal line), 25th and 
75th percentile (box), 1.5 times the inter-quartile range (~2 standard deviations) 
or minimum/maximum values of the data, whichever is smaller (whiskers) and 
outliers (circles).  
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