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ABSTRACT

Drought events have critical impacts on agricultural production yet there is
little consensus on how these should be measured and defined. This has
implications for drought research and policy, which tends to either define
droughts purely based on rainfall or focus uniquely on 'hot' droughts when
temperature is considered. We develop a flexible, rainfall-temperature
drought index that captures all dry events, including a previously overlooked
class of drought events that we term ‘cold’ droughts. Our index is applied to
a panel dataset of Indian districts over the period 1966-2009. Results suggest
a statistically significant relationship between the index and agricultural
production. Cold droughts are found to have consistent, negative marginal
impacts that are comparable to those of hot droughts. Estimates of average
yield losses due to hot droughts are reduced by as much as 33% when cold
droughts are omitted. The associated economic costs are even more
severely underestimated, by up to 107%.
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1. INTRODUCTION

Extended periods of low rainfall and high temperature that reduce the availability of moisture
relative to normal climate conditions broadly constitute drought events (Mishra and Singh,
2010). A number of low- and middle-income countries in the world, including those located
in Sub-Saharan Africa and the Indian sub-continent, are particularly vulnerable to the impacts
of such events. The human and economic costs of drought can be considerable. In India, the
setting for our paper, Gadgil and Gadgil (2006) estimate that severe drought lowered annual
GDP by around two to five percent between 1951 and 2003, while Pandey et al. (2007) show
that drought was accompanied by a 12 to 33% increase in the poverty headcount ratio and a
25 to 60% decline in household income. The onset of drought in India has also been
empirically linked to conflict, rural wages and human capital accumulation (Jayachandran,

2006; Sarson, 2015; Shah and Steinberg, forthcoming).

Against a backdrop of rising temperatures and drier conditions, droughts are projected to
become more common with critical implications for agricultural production (IPCC, 2012). How
drought is defined plays a central role in policymakers’ responses, not only in the agricultural
sector but also in the water sector and in early-warning systems. Yet, in the academic and
policy literatures there is presently little consensus on how droughts might be measured and
hence, defined. Indeed, there is no universal definition of the conditions constituting a
drought (Wilhite, 2000). A range of indices attempt to quantify the severity of a drought,
ranging from simple rainfall measures to complex indices that account for rainfall,
temperature and estimates of potential evapotranspiration (Mishra and Singh, 2010).
Different criteria of what constitutes a ‘drought’ therefore imply that a drought in one index
may not constitute a drought in another. The implication is that, depending on the index used,
there are classes of dry events which may simply be overlooked both in empirical analyses

and by policymakers.

In this paper, we develop a simple rainfall-temperature index that allows for a flexible
characterisation of drought events. It captures every dry event, in which cumulative (growing
season) precipitation is below average, long-term cumulative (growing season) precipitation,*

while accounting for temperature. The novelty of our index is to include both the type of dry

! Cumulative growing season precipitation is defined as total rainfall between June and September. Long-term
cumulative precipitation is average cumulative growing season precipitation between 1956 and 2009.
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events typically captured by indices that account for temperature, i.e. characterised by above-
average temperatures ('hot' droughts), as well as ones characterised by below-average
temperatures. To our knowledge, the latter, which we term ‘cold’ droughts, have not been
explicitly studied before. Our index is then applied to a panel dataset of Indian districts over
the period 1966-2009 in order to estimate the marginal and total effects of drought on cereal
productivity. These estimates are then used to calculate changes in yield and associated
economic impacts. In a country where over two-thirds of total land area is vulnerable to
drought (Ministry of Agriculture, 2009), and rain-fed agriculture covers approximately 60% of
cropped area (Sharma, 2011), our analysis contributes to an important body of research on

the impacts of droughts on Indian agriculture (e.g. Pandey et al., 2007; Sarkar, 2011).

After motivating our analysis in the context of the relevant literature in Section 2, we present
Indian weather data underlying hot and cold droughts, in Section 3. In Section 4, we propose
an extension to a multiplicative index originally developed by Yu and Babcock (2010). This
extension allows for a more flexible characterization of drought events while retaining a key
strength of their index, namely the inclusion of temperature and the capacity to capture the
interaction between rainfall and temperature. Applied to our panel dataset of Indian districts
in Section 5, we find a statistically significant relationship between the index and agricultural
production. We also find that cold droughts consistently display large negative marginal and
total effects, comparable to those of hot droughts, and that omitting cold droughts leads to
a large underestimation of total drought impact. Yield and economic losses are shown in

Section 6 to be underestimated by up to 33% and 107%, respectively. Section 7 concludes.
2. DEFINING ‘DROUGHT’

Simple drought indices often rely solely on precipitation measures and are typically preferred
by policy-makers, including the Indian Meteorological Department (IMD), over more complex
indices. Until 2016, the IMD recorded a ‘drought event’ when seasonal rainfall was below 75%
of its long-term average value (between 1950 and 2000), and a ‘severe drought’ when rainfall
was below 50% of this value. Simple metrics of precipitation deficiency, which have the
advantage of being easily interpretable, are also used to evaluate drought impacts on
agricultural production. For example, to estimate drought impact in the rice-growing regions
of Asia, Pandey et al. (2007) define a drought as ‘moderate’ if rainfall is 70-80 percent of

normal levels, and ‘severe’ if rainfall is 70 percent below normal. Auffhammer et al. (2012)



use a similar definition to study the effect of monsoon rainfall on rice yields in Indian states.

The strength of these indices lies in their simplicity.

However, simple definitions of drought are problematic for our understanding of drought
impacts for two reasons. First, they impose arbitrary thresholds in order to define drought,
evaluating drought impacts only after a given level of precipitation, when the agronomic or
empirical basis of such thresholds is unclear (Wilhite and Glantz, 1985). Second, variables in
addition to precipitation, in particular temperature, help determine the physical severity of a
drought.? Given temperature increases driven by climate change (Hatfield et al., 2011), a
growing literature suggests critical turning points at which higher temperatures cease to have
positive impacts on agricultural yield. Schlenker and Roberts (2009) find that higher
temperatures in the US reduce county-level yields for corn (above 29°C), soy-beans (30°C),
and cotton (32°C). Guiteras (2009) and Burgess et al. (2014) both show that, on average, daily
temperatures above 34°C in India reduces agricultural productivity at the district scale. Lobell

et al. (2012) identify the same threshold as harmful for Indian wheat yields.

High temperatures have particularly acute effects on crop growth during periods of low
precipitation since the rate of evapotranspiration, i.e. the combined process of water
evaporated from land surfaces and plants, increases as temperatures rise (Prasad et al., 2008;
Lobell and Gourdji, 2012). In general, this increases a plant's demand for water at a time when
water availability is already low due to deficient precipitation. Recent research has
documented that droughts in a range of settings have increased in severity as mean
temperatures have risen. Higher temperatures, rather than the increased intensity of low
rainfall events, have been held responsible for these drying trends (Vicente-Serrano et al.,
2014; Diffenbaugh et al., 2015). As such, not considering the effect of temperature on the
severity of a drought event could underestimate drought impact, in turn giving misleading

information about the likelihood of future production losses driven by climate change.

More complex indices tend to rely on data that are not readily available in most economic
datasets, e.g. for soil moisture levels and estimates of potential evapotranspiration. The lack
of data for deriving such measures, which can depend on factors such as wind, radiation and

humidity, limits their applicability in empirical analysis of drought impacts. In an attempt to

2 Such variables include, for example, access to irrigation.
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bridge the gap between simple and complex indices, Yu and Babcock (2010) propose a
drought index that neatly captures the interaction between two of the most important
factors: temperature and precipitation. Applied to the study of drought tolerance of soybean
and corn vyields in the US, it takes a non-zero value only for years of below-average
precipitation and above-average values of heat temperature (‘cooling degree-days’). The

authors find that soybeans and corn have become increasingly drought-tolerant over time.

This index has since been applied in a number of other settings, for example, to the
assessment of drought impact on soybean in Missouri (Purcell and Caine, 2013). Of particular
relevance is research by Birthal et al. (2015), who use the index to study the resilience of rice
yields to drought in India. Their results indicate that rice yields have become more tolerant to
drought over time. While this approach has the advantage of being a relatively simple way to
account for both temperature and precipitation, the index restricts the definition of drought
to events characterised by low rainfall accompanied by higher-than-average temperatures. It
does not consider events characterised by below-mean rainfall as well as below-mean
temperature. Such cold droughts are common in many settings, although their impacts on
agricultural production remain unknown, due to either being omitted altogether (as in Birthal
et al. 2015) or joined with hot droughts in arbitrarily-defined rainfall indices. This is an

important gap in the literature that our paper aims to fill.

We argue that cold droughts should not be omitted a priori for two reasons. First, a large
number of potentially destructive droughts are not considered, which can lead to a serious
underestimation of their total impact. Second, the classification of these events as non-
droughts could lead to biased estimates of drought impact. Thus, where cold droughts have
a significant negative impact on productivity, the application of Yu and Babcock's (2010) index
potentially underestimates drought impacts due to the inclusion of cold drought events in the

‘no drought’ control group.
3. DROUGHT IN INDIA

According to the definition used by the IMD (at least until 2016), 13 ‘All-India drought years’
have been recorded since the beginning of the Green Revolution in 1966 (Birthal et al., 2015).
Four of these occurred between 2000 and 2012. A ‘drought year’ was recorded when the total
area affected by a moderate or severe drought covered 20-40% of the total land area of the
country and seasonal rainfall during the monsoon season exceeded 10%. When more than
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40% of the total land area was affected by drought, this was known as an ‘All India Severe

Drought Year’.

Weather data on daily rainfall and daily average temperature at the district level are sourced
from the IMD to create Figures 1 and 2.3 Panel (a) of Figure 1 shows the proportion of districts
in every given year limited to events characterized by both below-average rainfall and above-
average temperature, i.e. the events considered by Birthal et al. (2015) using Yu and
Babcock’s (2010) index. The vertical blue lines indicate the years defined by India’s
government as All-India droughts. Panel (b) of Figure 1 shows the proportion of districts in
years characterised by below-average rainfall and below-average temperature; a large
proportion of districts are clearly affected by this type of drought event. Figure 2 shows why
the omission of these events is problematic. For each year, we estimate the number of
districts affected by hot droughts net of the number of those affected by cold droughts, with
a positive number (in red) denoting a year in which the former exceeds the latter. A negative
number (in blue) indicates a year in which the latter exceeds the former. Overall, hot droughts
are slightly more prevalent than cold droughts (roughly a split of 55% hot and 45% cold
drought). In the 1990s, most of the drought-affected districts were affected by hot droughts.
Since 1999, the number of cold droughts has increased, with the number of districts affected

by cold droughts outnumbering districts affected by hot droughts in seven out of 11 years.*
FIGURE 1 HERE

FIGURE 2 HERE

4. INTRODUCING A NEW DROUGHT INDEX

In this section, we build on Yu and Babcock’s (2010) drought index, incorporating both rainfall

and temperature. Their index is based on the following:

DI;; = [~ max(0, CLDD{{*"%)] * [min(0, TPCPF{*™%)] (1)

3 The rainfall data are available in gridded format at a resolution of 0.25°x 0.25° (Pai et al., 2014). Gridded
temperature data are at a resolution of 1°x1° (Srivastava et al., 2009). District-level weather data are then
obtained by taking a weighted average of gridded weather observations from grid cells that fall within a district's
boundary based on the proportion of the grid cell that falls in each district.

4 This pattern, however, is slightly less pronounced when we examine an alternatively-defined growing season
(May-December) (Figures Al and A2 in the Appendix).



where: DI denotes the drought index, for a given unit of observation, i, in year ¢t
CLDD;Ea”d is standardized Cooling Degree Days (above 65°F, or 18.33°C); and, TPCPff“"d is

standardized total monthly precipitation between the months of June and August.

This index gives a value of zero to drought whenever either the temperature is below average
or the rainfall is above average. As such, a drought occurs in a year when temperature is
uncommonly high and precipitation is low, relative to the long-term average of these
variables. A strength of this simple index lies in its capacity to capture the potential of high

temperatures to exacerbate the effects of low rainfall on crop production.

One weakness of the index described in (1) is that it defines as a drought only those years
when an area suffers both low rainfall and high temperatures. Omitted are years when rainfall
is low but temperatures are not particularly high. Defining drought events by low rainfall and
high temperature restricts the measure of drought to the lower-right quadrant of Figure 3.
Events in the lower-left quadrant, where both precipitation and temperature are below-

average, would not be counted as droughts according to the index in (1).
FIGURE 3 HERE

We consider a wider set of drought events by defining six variables. First, using weather data
from the IMD, we calculate district-specific average long-term cumulative rainfall, LTAR;, for

the growing season (June-September) over the period 1956-2009.> This variable is

. N TR;;—LTAR; . . .
standardized by estimating ZTR;; = # , where TR is total cumulative rainfall over
i

the growing season for a given year and sdTR; is the standard deviation of TRi.. Analogously,
we calculate the district-specific average cumulative growing season cooling degree days,
LTACDD;, for the June-September growing season as the average cumulative number of

degree-degree days above the mean daily growing season temperature over the period 1956-

- . . . . . N CDD;;—LTACDD;
2009.° Similar to rainfall, this variable is standardized by estimating ZCDD;; = W,
i

5> There are two main reasons driving our choice of growing season. First, the majority of India’s cereal production
is cultivated in the kharif season, between June and September. Second, according to Jain and Kumar (2012),
the majority of total yearly rainfall (approximately 80%) occurs between June and September. Authors such as
Prasana (2014) also highlight that, while there is a strong and positive response to kharif production and June-
September rainfall, the same is not necessarily true for rabi production and post-monsoon rainfall (October-
December). This partly relates to the fact that rabi crops rely on available moisture from the June-September
rains.

6 The growing season cooling degree days measure is calculated as follows. First, we obtain the average
growing season temperature. Second, for each day we subtract the average temperature from the observed
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where CDD;: is total cumulative daily degree days over the growing season for a given year

and sdCDD; is the standard deviation of CDDj:.

Let MTR;; = —TR;; , i.e. the negative of total cumulative rainfall. We then obtain the

MTR;;—MTRI"

- Where
MTR** TR

normalized version of this variable, NTR;;, by estimating NTR;; =

MTR™" denotes the minimum observed value for district i (i.e. the maximum rainfall
observed), and MTR[™** denotes its maximum observed value (i.e. lowest rainfall).
Normalizing the negative of rainfall, rather than rainfall directly, allows us to generate a
variable bounded between 0 and 1, with higher values signalling a more severe precipitation
deficiency. Similarly, for normalizing the degree days measure, we estimate NCDD;; =

CDD;;—CDD[™M"
cDDM4*— cpp[Mn

where CDD/™™ denotes the minimum observed value for district i (i.e. the

minimum number of degree days observed), and CDD/™** denotes its maximum observed

value (i.e. highest number of degree days observed in a given district).

A multiplicative relationship is generated between the two normalized variables, which we
use to define three different drought indices. First, hot droughts can be classified as D1;y,
corresponding to the classification of Yu and Babcock (2010) where rainfall is below normal
and temperature above normal. Second, D2;; corresponds to low rainfall in the absence of
abnormally high temperatures. Third, we combine D1;; and D2;; to get D12, thus
accounting for both hot and cold droughts. Formally, we have:
D1;; = NTR * NCDD if ZTR;; < 0 and ZCDD;, > 0; 0 otherwise
Drought =4 D2i = NTR * NCDD if ZTR;; < 0 and ZCDD;; < 0; 0 otherwise 2)
D124 = NTR* NCDD if ZTR;; < 0; O otherwise

As such, D1;; can be interpreted as a normalized version of Yu and Babcock’s (2010) index. It
captures all events in the lower-right quadrant of Figure 3, taking a strictly positive value for
all events characterized by below-average precipitation and above-average temperatures.
The second index, D2;;, only takes non-zero values for events with below-average rainfall and
below-average temperature, the category Yu and Babcock omit. Constructing these two

indices separately allows us to test their respective statistical significance in the vyield

temperature and obtain the number of degrees above the average temperature for each day. Finally, we sum
all the positive temperature deviations for each day of the growing season and obtain cumulative daily-degree
days.



regressions in Section 5. Finally, a third index, D12;;, simply combines D1;; and D2;; and
hence, captures all the events in the lower half of Figure 3. More detail on how the indices

are constructed is presented in the Technical Appendix (A).

Our indices are increasing in temperature but decreasing in precipitation since both higher
temperatures and lower precipitation are expected to contribute to drought severity. A
maximum value of one is obtained for the most severe droughts, and is only possible for the
restricted set of drought events considered by Yu and Babcock. The similarity of their index
to our own isillustrated in Table 1, which shows the correlation coefficients and the spearman
correlation coefficient. As expected, our index D1 is highly correlated with Yu-Babcock,
displaying a correlation coefficient of 0.776 and a spearman correlation coefficient in excess
of 0.99. Our second index, on the other hand, has a negative correlation coefficient. Since Yu-

Babcock is invariant with a value of zero for these events, this result is also as anticipated.
TABLE 1 HERE

Figure 4 shows how our indices change over time, for all districts (panels (a) and (b)) and for
drought-affected districts only (panels (c) and (d)). Hot (D1) and cold (D2) droughts are
denoted Types 1 and 2, respectively. There are clear spikes in the values of the index for a
number of All-India drought years. In recent years, 2002 and 2009 are associated with the
largest deviations in rainfall; spikes correspond to these two years. Similarly, 1972, 1979, 1987
are also considered years with particularly high deviations and our index rises in these years.
Throughout the 1990s, however, it is striking that, despite relatively modest deviations of
rainfall from trend, our index still records high values. On average, the negative deviations
from long-term average rainfall were smaller throughout the 1990s. A possible explanation
for this could be the fact that, as highlighted by Pai et al. (2012), overall, land surface air
temperatures have increased over time. This pattern was particularly pronounced in the

1990s and 2000s.

FIGURE 4 HERE



5. IMPACT OF DROUGHT ON CEREAL PRODUCTIVITY
5.1 Data and Methodology

To investigate drought impacts on aggregate cereal productivity at the district level, we obtain
agricultural data from the ICRISAT Meso-level Database.” For the period 1966-2009, the
dataset contains detailed agricultural and socioeconomic information (ICRISAT, 2012). For
most if not all districts, data are available for annual crop production and area under crop
production for a range of crops. We create a balanced panel, which implies that, out of the
311 availablein the dataset, only 275 districts are used in our empirical analysis due to missing
weather and/or production data. Six cereals are considered, namely rice, wheat, maize,
barley, sorghum, and millet.? Yields for each are estimated along with a simple cereal yield
variable, obtained by dividing total cereal production by total cereal area. Table 2 summarises

the variables used in our analysis.
TABLE 2 HERE

To model the relationship between yield and our drought index, we estimate the following

fixed-effects model:
IN(Yiee) = @i+ Ve + 6 ¥t + 8z % t* + By Dljpg + € 3)

where for district i in year t: In(yir) denotes the natural logarithm of cereal yield (or crop c); ;
and y; represent the district and year fixed effects, respectively; 6;; and §;, are the
coefficients on the district-specific quadratic trend. The coefficient associated with a type g
(i.e. Type 1 - hot or Type 2 - cold) drought index, which captures the marginal impact of a type
g drought, is denoted f,. Finally, €;; represents the error term. After estimating (3), we
include dummy variables for each of the drought types - Type 1, Type 2, Types 1 and 2 —in

order to account for a potential intercept shift and the convergence of marginal effects.

In the following section, we perform a number of tests on the sensitivity and robustness of
our main results. First, we cluster standard errors at the district level and second, consider
two alternative growing seasons: May-December and annual (January-December). The

former allows for the fact that, in some states, there may be substantial amounts of rain

7 Since 1966, a number of districts have split into smaller districts. To maintain spatial consistency over time
district splits are dealt with by returning split districts to their ‘parent’ districts as of 1966.
8 For millet we add data on quantities of pearl millet and finger millet to create an aggregate quantity of millet.
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outside of the June-September period. The latter is chosen to capture rainfall later in the year,
which may help explain rabi production, despite a current lack of evidence for post-monsoon

rainfall impacts on rabi production (see footnote 5 and Prasana, 2014).

In a third test, we adopt an alternative specification for cooling degree-days — 30 degrees
rather than the long-term district average temperature over the growing season — for two
reasons. First, according to research on the effects of temperature on crop yield in India (e.g.
Guiteras 2009), crop yields typically start decreasing above 30 degrees Celsius. Since we use
mean temperature, which in some cases is below 30 degrees C, it could be argued that an
increase in temperature should not necessarily result in a decline in production. However,
using 30 degrees C as an absolute cut-off point implies a value of zero in our drought index
for many drought events (when rainfall is very low), which makes our index less
comprehensible. Also, it is possible that in some cases, negative impacts of temperature on
production might be observed at levels below 30 degrees C, e.g. in ‘colder’ districts, where

the crops cultivated might be more sensitive to temperature deviations.

Consistent with Yu and Babcock (2010), we do not include controls in our main specifications.
This is also the norm in the broader weather and climate literature. In a fourth test, we thus
examine the sensitivity of all of our results to the inclusion of controls to ensure that they are
robust to the inclusion of variables which are also likely to affect production, such as irrigation
and the use of modern inputs. Fifth, we test alternative functional forms of the index. In
particular, since the impacts of drought may not be linear, we include a squared term. Finally,
we derive results using an additive index instead of a multiplicative index. An additive
relationship may be relevant in a number of extreme cases. For example, in a year where
rainfall is close to zero and where temperatures have also been low, our index would have a

low value, which may be misleading.
5.2 Regression results

We run a regression of the natural logarithm of yield on a set of district-specific quadratic
trends and the drought indices. Specifically, for both the main model described in (3) and all
of the robustness and sensitivity checks we run the regression using the full sample and by
crop. For the full sample and for each crop we then run three regressions. First, we include
only Type 1 (hot) drought events. Second, we estimate separate coefficients for Type 1 and
Type 2 (cold) drought events. Finally, we run a regression where we only include the drought

11



index that combines Type 1 and Type 2 events, i.e. hot and cold. The results for the full sample
can be seen in Table 3, with columns 1-3 showing results in the absence of dummy variables
and 4-6 those with the inclusion of dummies. The results by crop are in Tables 4-5 (without

dummies) and 6-7 (with dummies).

Table 3 highlights three main points. First, both types of drought have significant and negative
effects when considered separately, as shown in columns 2 and 5. Thus, Type 2 events, i.e.
those omitted by Yu and Babcock (2010) and Birthal et al. (2015), have large and statistically

significant, negative impacts on yield.
TABLE 3 HERE

Second, by comparing the specifications where we omit Type 2 events (columns 1 and 4) with
those where this type of event is included (columns 2 and 5), we note that the estimated
marginal coefficient of Type 1 droughts is smaller in the former. When we include a dummy
variable, the difference in magnitude is negligible. But when all dummy variables are
excluded, the coefficient of Type 1 events is substantially smaller - and outside the 95%
confidence interval of the estimated coefficient - when Type 2 events are also included (for a
graphical representation, see Figure A3 in the Appendix). Thus, a failure to account for Type
2 events can lead to an underestimate of the marginal impacts of drought, with this

underestimate being more severe when a dummy is not included.

Third, we find that in contrast to hot drought, cold droughts have a larger marginal, but lower
total, effect on agricultural production. Although both excess heat and reduced moisture have
negative impacts on production, reduced precipitation carries greater weight in the cold
drought index than in the hot drought index since values of temperature are, by definition,
higher in the latter than in the former. As a result, yields are likely to respond (more)
negatively to changes in the cold drought index than in the hot drought index. A value of 0.5
in our cold drought index represents approximately the same precipitation deficiency as a

value of one in our hot drought index, which could help explain larger marginal impacts.

The results by crop (Tables 4-7) corroborate the patterns found across the whole sample using
the cereal index. The estimated coefficients for Type 2 events are consistently large, negative
and significant for all crops except for maize (when dummies are excluded). This provides

further evidence that such events have a large negative impact on production and hence,
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should not be excluded from analyses of drought impact on cereal yield in India. Similar to
our findings for the whole sample, in most cases (maize again being the exception) when a
dummy is not included to account for the intercept shift, the omission of Type 2 events leads
to a smaller, estimated coefficient of Type 1 droughts. This effect is especially large in the case
of rice, the crop analysed by Birthal et al. (2015), thus implying that they may have
underestimated the impact of drought on rice. We estimate the potential scale of

underestimation, in terms of yield and its economic value, below.
TABLE 4 HERE
TABLE 5 HERE
TABLE 6 HERE
TABLE 7 HERE

We perform a number of sensitivity checks on our results, in which we consider: (i) standard
errors clustered at the state level; (ii) two alternative growing seasons (May-December and
annual); (iii) an alternative specification for our degree-days variable (30 degrees C rather
than the long-term district average temperature over the growing season); (iv) controls; (v)
alternative functional forms of the index (including the square of the index); and, (vi) an
additive index instead of a multiplicative index. For the full sample, the coefficients from each
of these specifications are summarized in Tables A1-A2. In Figure A3, we present a graphical
summary of the coefficient values and their confidence intervals for each specification using

the full sample.’ Tables A3-A14 summarize all the robustness checks by crop.

In summary, while different specifications unsurprisingly generate different coefficients, our
overarching conclusions are quite robust, especially in the case of aggregate cereal
production. One key result, that of cold droughts driving larger marginal effects than hot
droughts, is, in contrast to our other main results less robust in a number of alternative
specifications. Of all the checks, our results are especially robust to alternative index

specifications (Tables A4, A6, A8, A10, A12, A14).

6. ESTIMATING YIELD AND ECONOMIC LOSSES

% Tables with the additional robustness checks are available from the authors upon request.
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In a back-of-the-envelope attempt to gauge first, how important both types of droughts are
in the Indian context and second, how serious the omission of Type 2 droughts is for
estimating Type 1 drought impacts, we run simple simulations using our estimated
regressions. This allows us to generate predictions of yields with and without droughts.
Specifically, we estimate the: (i) average yield loss for an affected district over the sample
period; (ii) average total production loss for an affected district over the sample period; (iii)
average total value of production for an affected district; (iv) average unweighted yearly total
production loss in our sample of Indian districts; and, (v) the average yearly total cost across
sampled districts. A summary of estimates is presented in Tables 8 and 9, including crop-
specific results.!? Details of how we generated these estimates can be found in the Technical

Appendix (B).
TABLE 8 HERE
TABLE 9 HERE

From Tables 8 and 9, we note the following. Despite a higher estimated coefficient, total yield
and economic losses from cold droughts are smaller than those from hot droughts. This is due
to the index values for cold droughts being substantially lower (approximately half) for
affected districts. For our aggregate cereal measure, we estimate the average yield loss per
district at 160 kg/ha and 110 kg/ha for hot and cold droughts, respectively. These smaller
impacts on yields translate into lower total economic costs. Whereas we estimate that, in a
given year, the total economic cost of a hot drought is, on average, approximately USD 1.02
billion (using 2008 crop prices; column 2 in Table 8),*! this falls to USD 650 million for a cold

drought (column 3 in Table 8).

To our knowledge, there is only one study in the literature that attempts to estimate drought
costs for the whole of the country. Using data for all Indian districts, Sarkar (2011) estimate
cereal losses of 27.6 million tonnes due to drought in 2002.'% In our sample of 275 districts

(out of 311 apportioned districts), we estimate total production losses of about 16.3-16.9

10 For the crop-specific results, these were obtained using the crop-specific regressions.

11 Crop prices in Indian rupees are converted into USD using the average monthly exchange rate obtained from
http://www.x-rates.com/average/?from=USD&to=INR&amount=1&year=2008. More details on how prices are
computed are available in the Technical Appendix (B).

12 They value these losses at around 1.3 trillion rupees. An error in their calculations, however, suggests a loss
closer to 130 billion rupees
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million tonnes in 2002, which we value at 103 billion rupees using nominal prices. In addition
to covering fewer districts, the differences in estimates are also likely to stem from
methodological differences as well as the fact that we do not take into account a potential

reduction in cultivated area during a drought year.!3

Omitting cold droughts can lead to a lower estimate of hot drought impact, especially when
the dummy variables are excluded. Including dummy variables allows for a convergence in
the marginal effect. However, if the change in intercept is taken into account when estimating
costs, the divergences in the costs persist despite the inclusion of dummy variables. These
effects are quantifiably large as we illustrate by comparing the first two columns of Tables 8
and 9 for the full sample. When dummies are excluded (Table 8), this effect is large. Average
yield losses are estimated to be 33% higher (from 120kg/ha to 160 kg/ha) when cold droughts
are included. These estimates have a substantial effect on the estimated average annual cost.
This is USD 805 million (Table 8, column 1) when cold droughts are omitted compared to USD
1.02 billion (Table 8, column 2) when they are included, which represents a 27% increase.
Thus, if estimating the economic cost of hot droughts without accounting for cold droughts,
the average yearly total costs of drought would approximate USD 805 million. Including cold
droughts raises this total cost by 107% to USD 1.67 billion (column 4 in Table 8). The difference
can be broken down as follows: USD 216 million can be attributed to the lower coefficient of
hot droughts, and USD 649 million to the inclusion of cold droughts. A similar difference exists

when dummy variables are included, in Table 9.14

The impacts derived using the separate crop-specific specifications generate patterns of yields
and costs similar to those that emerge from our aggregate cereal specification. Also, the
patterns that emerge in the full sample specification are present in the crop-specific
regressions. Cold droughts have a particularly large impact on rice, leading to substantive

physical and economic losses. Indeed, about half of the total average economic cost from cold

13 A more detailed explanation is given in the Technical Appendix (B). There are two further studies that attempt
to estimate drought costs in India, which are less relevant for the purpose of comparison with our estimates.
Pandey et al. (2007) estimate costs from yield losses for three states in eastern India and the EM-DAT database
bases its national-level cost estimates on the basis of losses in housing, agriculture and livestock. Within range
of our estimates, the former estimate a cost of USD 900 million for the 2002 drought. However, a large number
of droughts do not have associated costs. Specifically, for our sample period, only 12 drought events were
recorded for India in the EM-DAT database and, out of these 12 events, only five have had their associated costs
estimated.

1 However, in the case of Table 9, this difference arises from accounting for the intercept change, rather than
the underestimation of the marginal impact.
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droughts can be explained by losses in rice yields. In the absence of dummies, we estimate
rice yield losses of around 160kg/ha (column 5 under ‘Rice’ in Table 8). Excluding Type 2
drought, i.e. comparing column 1 and 2 under ‘Rice’ in Table 8, suggests underestimates in
the region of about 33%. Thus, it is highly likely that Birthal et al. (2015) underestimated the

impacts of droughts on rice yields in their analysis.*
7. CONCLUSION

Overall, there are three main findings that emerge from our analysis. First, after proposing an
index which extends one developed by Yu and Babcock (2010), we show that both hot and
cold droughts have significant impacts on agricultural productivity in India. Thus, it is
important to include the latter category of droughts, especially in a setting where there has
been a clear increase in the number of such events in recent years. Moreover, if an
assessment of economic impacts is performed solely based on hot droughts alone,
approximately half of all potential dry events would be overlooked. Our results strongly

suggest that these events have had quite a severe impact on cereal yields.

Second, the omission of cold droughts leads to a smaller estimated coefficient of hot
droughts, especially when a dummy variable is not included to account for a potential
intercept shift. Effectively, this implies that, if cold droughts have a large negative effect on
productivity, estimating the coefficient for hot droughts without accounting for cold droughts
could lead to underestimates of the marginal effect of hot drought thus further downward
biasing the overall impact of drought in empirical analyses. This result does not challenge the
central findings of Yu and Babcock (2010) and Birthal et al. (2015) that impacts of drought
have declined over time. Yet, it does question the size of the marginal impacts estimated in
both of these studies, and implies that a focus on hot droughts alone does not tell the whole

drought story.

Third, the quantitative implications of our results are likely to be large, particularly given the
fact that our cost estimates are based purely on yield losses. Since we do not take any

potential changes in the cultivated area into account, we are likely to underestimate true

15 Birthal et al. (2015) estimate rice yield losses due to drought ranging from 187 to 200 kg/ha. Differences in
estimated impact are also likely to stem from the fact that they use a different sub-sample of districts and
estimate a specification that differs from the one used in our analysis, e.g. we adopt a district-specific quadratic
trend whereas they adopt a linear trend, as well as including interaction terms and irrigation as a control
variable.
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production losses. The economic value of production loss attributable to cold droughts is
illustrated to be approximately 60% of the total economic value of production losses
attributable to hot droughts in our main specification. Also, omitting cold droughts and a
dummy variable can lead to an underestimation of the economic value of production losses
due to hot droughts, which in our simulations amounted to a difference of about 27%. While
we acknowledge that our back-of-the envelope estimates are based on a number of
assumptions regarding prices and so forth, they do suggest that we have found sufficient
empirical evidence and an economic rationale to justify the inclusion of cold drought in

analyses of drought impact.

Our results have clear implications for public policy. Since cold droughts have measurable
impacts on agricultural production that are severe yet not as severe as those resulting from
hot droughts, policymakers should seek to distinguish between the two types of drought
defined in this paper. Simple metrics of precipitation deficiency will obviously capture both
types but since temperature plays a critical role in determining the extent of dry conditions
at the local scale, it still needs to be explicitly accounted for. Detecting cold drought and
tracking their impacts over time can serve as an early-warning response for when cold
droughts transform into hot droughts, i.e. during periods when temperatures are predicted
to be above the average of long-term trends. With global warming expected to continue to
contribute to rising temperatures as well as potentially influencing patterns of extreme
rainfall events, our index can thus help to shape the appropriate policy response to drought,
particularly with respect to climate adaptation and agricultural production in more climate

vulnerable locations.
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9.

FIGURES AND TABLES

1 Drought in India

Figure 1: Proportion of drought-affected districts (by type) (June-September only)
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(a) Type 1 events (“hot droughts")
(below-average rain & above-average temperature)
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Proportion of districts in type 2 event
95% Cl
Local polynomial fit (bw=1)

(b) Type 2 events (‘“cold droughts")
(below-average rain & below-average temperature)

Notes: Type 1 events denote events where rainfall was below-average and temperature was above average. Con-
versely, Type 2 events refer to events where both rainfall and temperature were below-average. The rainfall average
variable is calculated as the district mean cumulative rainfall from June-September from 1956-2009. The average
temperature variable is calculated as the average degree days above the mean season temperature from June-

September.

The solid vertical lines represent the years considered by the Indian Government as All-India drought years.

Source: Authors’ own calculations
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N type 1 - N type 2 events
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Figure 2: Type 1 droughts in excess of Type 2 droughts (June-September only)
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Notes: The scatter points highlight the total munber of droughts (by type) in a given year. In the case of Type 1
droughts (red scatter points) these can be interpreted directly (i.e. 200 means that 200 districts were affects by a
Type 1 drought). However, in the case of the Type 2 droughts, these should be interpreted as the negative of the
number (i.e. if the observed value is -100, this means there were 100 districts affected by Type 2 droughts).

Bar graphs show the number of affected districts affected by Type 1 droughts in excess of the nmumber affected by
Type 2 droughts. As a result a result a value of 50 would mean that there were 50 more districts affected by a
Type 1 drought than affected by a Type 2 drought in a given year. The converse applies to a negative number,
which highlights a higher number of districts affected by cold droughts in a given vear.

The solid vertical lines represent the vears considered by the Indian Government as All-India drought years.
Source: Authors own calculations
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Figure 3: Rainfall-temperature quadrants

Standard Deviations rain

T T
Standard Deviations temperature

Notes: Long-term average rainfall is caleulated as the average cumulative rainfall for the June-September period
for the 1956-2009 period. Average temperature is defined as the number of degree-days above the mean daily
June-September temperature for the 1956-2009 period.

Table 1: Correlation coefficients and Spearman correlation coefficients

Correlation coefficients

Babcock-Yu DI (ql) DI (q2) DI (ql and ¢2)
Babcock-Yu 1.000

DI (ql) 0.776 1.000
DI (¢2) 0181 -0.303  1.000
DI (q12) 0.736 0919  0.097 1.000

Spearman correlation coeflicients

Babcock-Yu DI (ql) DI (q2) DI (ql and ¢2)
Babcock-Yu 1.000

DI (ql) 0.992 1.000
DI (¢2) 0359  -0.359 1000
DI (12) 0.821 0830  0.217 1.000
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Figure 4: Average drought index value
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Table 2: Summary Statistics of observations in the sample

Variables N Mean S.D Min Max
Cereal yield (t/ha) 12100 1.463  0.787  0.006 4.775
Cereal Area (1,000,000 ha) 12100 0.352 0.195  0.001  1.334
Barley yield (t/ha) 5842 1.383  0.688  0.048  5.400
Cereal area under barley production (%) 12031 0.015 0.036 0.000  0.320
Maize yield (t/ha) 10621 1.431 0.929  0.003  9.739
Cereal area under maize production (%) 12099 0.065 0.113 0.000  0.838
Millet yield (t/ha) 9852 0.798  0.439  0.000 4.000
Cereal arca under millet production (%) 12100 0.131 0.220 0.000  1.000
Rice yield (t/ha) 11398 1.492 0.853  0.009 5.542
Cereal area under rice production (%) 12100 0.401 0.357  0.000 1.000
Sorghum vield (t/ha) 9694 0.774 0.434 0.001  9.836
Cereal area under sorghum production (%) 12066 0.148 0.225 0.000  0.929
Wheat vyield (i /ha) 10275 1.643 0.878 0.046 6.324
Cereal area under wheat production (%) 12093 0.240 0.246 0.000  0.972
Proportion of net irrigated area (%) 12095 0.355 0.270 0.000 1467
Rural population density (by gross cereal arca) 11787 3.566 2.142 0.428  17.907
Fertiliser (t/1.000 ha) 11889 60.571  61.406  0.000  614.493
Cumulative rainfall (mm) (June-September) 12100 863.837 529.348 13.125 5313.428
Hot Degree-Days (HDD, June-September) 12100 94.422 47204  2.697 278.413
Babcock-Yu index, June-September 12100 0.270 0.752 0.000  7.998
Drought index (quadrant 1) 12100 0.146 0.245 0.000 1
Drought index (quadrant 2) 12100 0.049 0.097 0.000  0.544
Drought index (quadrants 1 and 2) 12100 0.196 0.237 0.000 1

Notes: Rural population density is calculated by dividing total rural population by gross cropped area. Our hot
degree-days measure is caleulated based on average daily district temperature in the months of June-September
for the period 1956-2009.
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Table 3: Full sample results

No dummies Dummies
Variables 1 2 3 4 5 6
Dummy (Type 1) 0.041%%  0.019
(0.018)  (0.018)
Drought index (Type 1) -0.192%%% -0, 238 -0.267FFF -0.2717F*
(0.019)  (0.021) (0.011)  (0.042)
Dummy (Type 2) 0.0227%*
(0.011)
Drought index (Type 2) -(0.391 % -0.471%%*
(0.036) (0.052)
Dummy (2 types) -0.011
(0.009)
Drought index (2 types) (). 255 -().2327H
(0.021) (0.028)
Constant S0.3617FFF _0.3267FF _(0.313%FF  _0,.359%FF  _(.323%FF  _(.3167FF
(0.022)  (0.022)  (0.022)  (0.022)  (0.022)  (0.023)
Time trends v v v v v v
District fixed effects v v v v v v
Year fixed effects v v v v v v
Controls
Number of observations 12100 12100 12100 12100 12100 12100
Number of districts 275 275 275 275 275 275
R-squared a 0.705 0.712 0.711 0.705 0.713 0.711
R-squared w 0.719 0.726 0.725 0.72 0.727 0.725

Notes: Values in parentheses denote clustered standard errors at the district level.

* ok

and *** denote

statistical significance at the 10%, 5% and 1% level, respectively. District trends denote a quadratic district-

specific trend.

Table 4: Results by crop - rice, wheat and maize (no dummies)

Rice Wheat Maize
Variables 1 2 3 1 5 6 7 8 9
Drought index (Type 1) -0.249%%% _(.303%%* -0.128%FF (0,161 %%* 0,138 (. 1187
(0.020)  (0.0: (0.016)  (0.017) (0.026)  (0.029)

Drought index (Type 2)
Drought index (2 types)

Constant

-0.469%

(0.041)

10,2637
(0.032)

Time trends
District fixed effects
Year fixed effects
Controls

Number of observations N 10560 10560 10560 8756 8756 8756 7656 7656 7656
Number of districts 240 240 240 199 199 199 174 171 174
R-squared a 0.532 0.542 0.541 0.713 0.716 0.716 0.398 0.398 0.396
R-squared w 0.555 0.565 0.563 0.727 0.731 0.73 0.428 0.429 0.426
Notes: Values in parentheses denote clusiered standard errors at the district level. *, ¥ and *%% denote statistical significance at the 10%, 5%

and 1% level, respectively. District trends denote a quadratic district-specific trend.
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Table 5: Results by crop - millet, sorghum and barley (no dummies)

Millet Sorghum Barley
Variables 1 2 3 1 5 6 7 8 9
Drought index (Type 1) -0.240%%%  (.287+%* -0.159%%F (. 188“’ -0.013 32
(0.039) (0.044) (0.031) (0.0: (0.027)
Drought index (Tyvpe 2) -0.381%+* -0.
(0.078) (0.
Drought index (2 types) -(.297#F* -0.195%+* -0.051%*
(0.045) (0.036) (0.027)
Constant S0.724FFE 10,6927 F (0.684FFH | L. T28FFF (. TLOTHF _0.703%FF | 20.349FFF (. 328FFF  _(.315FF*
(0.041) (0.041) (0.041) {0.051) (0.050) (0.048) (0.040) (0.040) (0.039)
Time trends v v v v v v v v v
District fixed effects v v v v v v v v v
Year fixed effects v v v v v v v v v
Controls
Number of observations 7172 T2 7172 6908 G908 6908 3432 3432 3432
Number of districts 163 163 163 157 157 157 78 78 78
R-squared a 0.429 0.434 0.434 0.335 0.337 0.337 0.767 0.768 0.767
R-squared w 0.459 0.463 0.463 0.369 0.371 0.371 0.78 0.781 0.78

Notes: Values in parentheses denote clustered standard ervors at the district level. ¥ #F and ¥** denote statistical significance at the 10%, 5%

and 1% level. respectively.

District trends denote a quadratic district-specific trend.

Table 6: Results by crop - rice, wheat and maize (with dummies)

Rice Wheat Maize

Variables 1 2 3 | i § 7 8 9
Dummy (Type 1) 0.047 0.014 0.01 -0.006 01577 (). 18 )x“x

(0.033)  (0.033) (0.017)  (0.017) (0.032) (0
Drought index (Type 1) -0.336%%% .330%%* 0.145%%% (). 150%+* S0.424%%% (), ll%“*

(0.062)  (0.061) (0.039)  (0.039) (0.068)  (0.068)
Dummy (Type 2) -0.023% 0.01 0. 1(1()”’

(0.013) (0.011) (0.0
Drought index (Type 2) -(.38(0%** -0.300%** -0. l%‘)”’
(0.072) (0.057) (0.107)
Dummy (2 types) -0.033*F** -0.016** 0. 1(:0”’
(0.010) (0.008) (0.0
Drought index (2 types) -0.2 g -0, 14375 -0. ll_‘”
(0.029) (0.024) (0.046)

Constant ~0.2327%F% (0, 199%%F (0,191 | -(0.33 -0.309%%F _0,3057%% | -(,198%%*  0.187*** (.18 1““k

(0.034)  (0.035)  (0.035) | (0.027)  (0.028)  (0.029) | (0.050)  (0.051) (0.0
Thme trends v v v v v v v v v
District fixed effects v v v v v v v v v
Year fixed effects v v v v v v v v v
Controls
Number of observations 10560 10560 10560 8756 8756 8756 7656 7656 7656
Number of districts 240 240 240 199 199 199 174 174 174
R-squared a 0.532 0.512 0.511 0.713 0.716 0.716 0.4 0.406 0.106
R-squared w 0.556 0.565 0.564 0.727 0.731 0.73 0.431 0.436 0.436

Notes: Values in parentheses denote clusiered standard errors at the district level. *, #F and ¥ denote statistical significance at the 10%, 5%

aud 1% level, respectively,
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Table 7: Results by crop - millet, sorghum and barley (with dummies)

Millet Sorghum Barley

Variables 2 3 1 5 6 7 8 9
Dumimy (Type 1) 0.062* 0.099%* 0.093%* -0.005 -0.017

(0.031) (0.043) (0.045) (0.024) (0.024)
Drought index (Type 1) -0.378%% -(.392%%* S0.3407F (), 351 -0.003 0

(0.079) (0.088)  (0.088) (0.038)  (0.038)
Dummy (Type 2) 0,087 0.097%% 0.004

(0.020) (0.021) (0.018)
Drought index (Type -0.6997%* (.57 S0.17 4

(0.117) (0.096) (0.087)
Dummy (2 types) 0.038%* 0.059%%* -0.022

(0.017) (0.022) (0.014)
Drought index (2 types) -0.37 1 -0.310%%* -0.004
(0.058) (0.050) (0.046)

Constant -0.690%F4F  L0.67TFFH | 072675 -0.692%%F (.67 -0.350%HF% (. 3278 (). 32%%

(0.010) (0.011) (0.052) (0.050) (0.051) (0.040) (0.041) (0.040)
Time trends v v v v v v v v
District fixed eflects v v v v v v v v
Year fixed effects v v v v v v v v
Controls
Number of observations 7172 7172 G908 (G908 G908 3432 3432 3432
Number of districts 163 163 157 157 157 78 78 78
R-squared a 0.435 0.434 0.336 (0.339 0.338 0.767 0.767 0.767
R-squared w 0.465 0.163 0.37 0.373 0.372 0.78 0.781 0.781

Nates: Values in parentheses denote clustered standard errors at the distriet level, *, % and *** denote statistical significance at the 10%, 5%
and 1% level, respectively. District trends denote a quadratic district-specilic trend.
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Table 8: Cost estimates - No dummies

Main

Type 1 (only) Type 1 (sep) Type 2 (sep) 2 types (sep) 2 types (Together)

Full sample

Av. yield loss (district) (t/ha) 0.12 0.16 0.11 0.14 0.12
Av. production loss (district) (1,000t) 40.49 50.95 39.11 45.57 41.28
Av. production cost (district) (mil usd)  9.78 12.30 9.44 11.00 9.97
Av. vearly total production loss (1,000 t) 3.,332.87 4,229.59 2,689.97 6,919.56 6.270.95
Av. yearly total cost (mil usd) 804.79 1,021.32 6G49.55 1.670.87 1.514.25
Rice
Av. vield loss (district) (t/ha) 0.16 0.20 0.14 0.17 0.16
Av. production loss (district) (1,000t) 24.56 30.55 2141 26.38 2411
Av. production cost (district) (mil usd) — 7.36 9.15 6.41 7.90 7.22
Av. vearly total production loss (1.000 t) 1.745.70 2.177.00 1.283.33 3.460.33 3.185.97
Av. yearly total cost (mil usd) 522.79 651.95 384.32 1,036.28 954.11
Wheat
Av. vield loss (district) (t/ha) 0.10 0.13 0.09 0.11 .10
Av. production loss (district) (1,000t) 10.99 14.04 11.32 1277 11.56
Av. production cost (district) (mil usd) 2,46 3.14 2.53 2.86 2.58
Av. vearly total production loss (1.000 t) 655.71 822.57 580.93 1.403.51 1.272.08
Av. yearly total cost (mil usd) 146.62 183.93 129.90 313.83 284.45
Sorg
Av. yield loss (district) (t/ha) 0.06 0.04 0.06 0.06
Av. production loss (district) (1,000t) 5.30 347 5.08 4.91
Av. production cost (district) {mil usd)  1.00 0.66 0.96 0.93
Av. vearly total production loss (1,000 t) 262.99 134.30 445.46 430.35
Av. yearly total cost (mil usd) 49.65 25.36 84.10 81.25
Millet
Av. vield loss (district) (t/ha) 0.09 0.06 0.09 0.08
Av. production loss (district) (1,000t) 5.96 4.40 5.92 5.61
Av. production cost (district) (mil usd)  1.04 . 0.77 1.04 0.98
Av. yearly total produetion loss (1,000 t) 289.48 351.53 185.12 536.65 508.72
Av. vearly total cost (mil usd) 50.74 61.61 32,45 94.06 89.16
Barley
Av. vield loss (district) (t/ha) 0.01 0.02 0.05 0.04 (.03
Av. production loss (district) (1,000t) 0.12 0.28 0.57 0.42 0.32
Av. production cost (district) (mil usd) — 0.02 0.05 0.11 0.08 0.06
Av. yearly total production loss (1.000 t) 2.57 6.09 12.00 18.08 13.78
Av. yvearly total cost (mil usd) .49 1.16 2.29 3.45 2.63
Maize
Av. yield loss (district) (t/ha) 0.08 0.07 - 0.04 0.02 0.04
Av. production loss (district) (1,000t) 2.13 1.81 - 1.02 0.52 0.95
Av. production cost (district) (mil usd) — 0.34 0.29 - 0.16 0.08 0.15
Av. vearly total produetion loss (1,000 t) 111.05 94.82 - 4445 50.36 01.88
Av. vearly total cost (mil usd) 17.91 15.29 - TA7 8.12 14.82

Notes:Individual cereal prices used represent the 2008 weighted cereal prices converted into USD using the average monthly exchange rate over
this year. Aggregate cereal prices also use the 2008 cereal-specific prices All numbers were rounded to two decimal places.
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Table 9: Cost estimates - Dummies

Main

Type 1 (only) Tvpe 1 (sep) Tvpe 2 (sep) 2 tvpes (sep) 2 types (Together)

Full sample

Av. vield loss (district] (t/ha) 0.12 0.15 0.10 0.13 0.13
Av. production loss (district) (1.000t) 39.02 49.85 35.90 43.51 42.99
Av. production cost (district) (mil usd)  9.42 12.04 8.67 10.51 10.38
Av. yearly total production loss (1.000 t) 3.212.20 1,136.44 2.168.96 6.605.39 6.530.82
Av. yearly total cost (mil usd) 775.65 998.83 596.18 1.595.00 1.577.00
Rice
Av. yield loss (distriet) (t/ha) 0.16 0.20 0.15 0.17 0.17
Av. production loss (district) (1,000t) 23.79 30.38 22.52 26.79 26.34
Av. production cost (district) (mil usd)  7.12 9.10 8.02 7.89
Av. yearly total production loss (1,000 t) 1,691.33 2.165.23 88 3.017.11 3.480.88
Av. yearly total cost (mil usd) 506.51 (G48.43 404.85 1.053.28 1.042.43
Wheat
Av. vield loss (district) (t/'ha) 0.10 0.13 0.09 0.11 0.11
Av. production loss (district) (1.000t) 10.87 14.08 10.88 12.59 12,51
Av. production cost (district) (mil usd) 2,43 3.15 2.43 2.81 2.80
Av. yearly total production loss (1,000 t) 637.44 824.96 HAH7.78 1.382.74 1.377.14
Av. yearly total cost (mil usd) 142.54 184.47 124.72 309.19 307.94
Sorg
Av. vield loss (district] (t/'ha) 0.05 0.06 0.02 0.04 0.04
Av. production loss (district) (1,000t) 5.00 5.83 1.85 4.07 3.96
Av. production cost (district) (mil usd)  0.95 1.10 0.35 0.77 0.75
Av. yearly total production loss (1,000 t) 247.75 286.11 T71.40 357.51 347.50
Av. yearly total cost (mil usd) 46.78 54.02 13.48 67.50 (5.61
Millet
Av. vield loss (district] (t/ha) 0.08 0.10 0.04 0.07 0.07
Av. production loss (distriet) (1.000t) 5.37 6.52 2.62 471 4.80
Av. production cost (district) (mil usd) .94 1.14 0.46 .82 (.84
Av. yearly total production loss (1,000 t) 260.74 316.69 110.08 426.78 435.03
Av. vearly total cost (mil usd) 45.70 55.51 19.29 74.80 76.25
Barley
Av. yield loss (district] (t/ha) 0.01 0.03 0.05 0.04 0.04
Av. production loss (district) (1,000t) 0.12 0.30 0.56 0.43 .42
Av. production cost (district) (mil usd)  0.02 0.06 0.11 0.08 0.08
Av. yearly total production loss (1.000 t) 2.46 (.39 11.96 18.35 18.06
Av. yearly total cost (mil usd) 0.47 1.22 298 3.50 3.45
Maize
Av. vield loss (district] (t/ha) 0.07 0.05 - 0.10 - 0.02 - 0.02
Av. production loss (district) (1.000t) 1.65 1.09 - 2.53 - 0.56 - .56
Av. production cost (district) (mil usd)  0.27 0.18 - 0.41 - 0.09 - 0.09
Av. vearly total production loss (1,000 t) 86.38 57.36 - 111.07 - 53.71 - 53.72
Av. vearly total cost (mil usd) 13.93 9.25 - 17.91 - 8.66 - 8.66

Notes:Individual cereal prices used represent the 2008 weighted cereal prices converted into USD using the average monthly exchange rate over
this year. Aggregate cereal prices also use the 2008 cereal-specific prices All numbers were rounded to two decimal places.
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10. TECHNICAL APPENDICIES
9.1. (A) — Data and Variables
Building the dataset:

We start with the raw data file, which already includes cumulative monthly rainfall data at

the district level.
Generating rainfall variables

We generate three rainfall variables, which represent cumulative rainfall over three distinct

periods, namely:

e Ashort Monsoon period (June-September), used in our main results
e An extended Monsoon period (May-December), used as a robustness check.

e An annual rainfall measure (January-December), used as a robustness check.

For each of the three cumulative rainfall variables we then define a long-term average rainfall
measure for each district. To do this, we take the average total cumulative rainfall over the
growing season for each district over the period 1956-2009. For our main specification, we

define the growing season as June-September (see above).

For a given district, the general formula used is the following:

N
TR = ) Rmi
m=1

Where the total rainfall in a given growing season for a given district i in a given year t, is equal
to the sum of the monthly cumulative rainfall over the months (m to M) included in the

growing season. To calculate the long-term average rainfall, we use the following formula:

T=2009

Where the long-term average rainfall for a given district i is simply calculated as the average

total rainfall in that district over the 1956-2009 period.
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Generating temperature variables

We opt for a measure of cooling degree days (CDD) to capture accumulated heat over the
growing season (June-September, in our main specification). This captures the number of
degree-days above a reference temperature over a given time period. We use two alternative

specifications for generating this variable.

In our main specification, we compute CDD based on the average temperature over the
monsoon period (June-September). We test the sensitivity of results to alternative growing

periods (May-December and Annual, respectively).

Our first step is to define the average daily temperature over the growing season for each

district between 1956 and 2009. For any given district, CDD is estimated as:

M D
CDD;, = z Z DT;nq — DTA))

m=1d=1
Our long-term average CDD is then calculated as follows:

1 T=2009
LTACDD; = =, Z CDD;,

t=1956

where d and m represent a given day and month included in the growing season and N and
M respectively represent the total numbers of days in a given month and the total number of
months in the growing season; DT denotes the average daily temperature in district i in day d
of month m; and, DTA represents the average growing season daily temperature for a given
district over the 1956-2009 period. Next, we create LTACDD;, which is simply the average
cumulative degree days above the mean daily temperature experienced by district i over the

1956-2009 period.

In addition, we create alternative degree day variables, where 30 degrees is used as a base
temperature (instead of the average temperature over the growing season). We do this for

the three alternative growing seasons. We have:

M

D
CDD30;, = Z Z DTy —

m=1 d:
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There are two main reasons why we use the district average as our reference temperature.
The first has to do with the fact that we often pool a number of cereals together in our
regressions. Given that there is no unique reference temperature for ‘cereals’, we prefer to
use the district mean temperature. The second reason relates to sample size. Some districts
may not have many days with an average daily temperature above 30 degrees. Thus, these

districts have to be dropped from our sample since they have an invariant drought index.
Data inputting for controls used in the robustness check

In an attempt to gauge the sensitivity of our results to the inclusion of additional controls, we
include a number of variables which could ostensibly be related to observed yields. These
include area under cultivation, fertilizer, rural population density and proportion of irrigated
area. For the latter three variables, there are a number of missing observations. For instance,
in the case of rural population, the values are only recorded every 10 years when a census is
performed. In other cases, there are also a number of missing observations. It should be
stressed, however, that the imputations discussed below do not affect our main results since
we use them only as a robustness check. We now discuss the assumptions underlying the

imputation of each variable.

In the case of rural population we have data for 1971, 1981, 1991 and 2001. As such, between
two waves of the census (e.g. between 1981 and 1991), we assume an exponential growth in
between two waves. In the case of the pre-1971 and post-2001 data, we assume the growth
rate of the subsequent and previous period, respectively, i.e. for the pre-1971 data, we
assume the growth rate witnessed between 1971 and 1981. Similarly, for the post-2001 data,
we assume the growth rate witnessed between 1991 and 2001. There are five occurrences
where this process predicts impossible values (i.e. negative population). For these five we
replace the impossible value by a missing value. Since we confine our sample to a balanced

sample for all of our robustness checks, these observations are not used.

For the remaining variables, fertilizer and irrigation, we use linear interpolation (using the
Stata command ipol) when the missing observation is between two values. In order to reduce
the number of missing observations, we use linear extrapolation when they are either before
the first or after the last observation (by using the Stata option epolate within the ipolate
command). In the case of fertilizer we initially have 2,691 missing observations. However, the
majority of these occur outside of our sample period (1966-2009). Only 270 observations
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occur within our sample period and are either interpolated or extrapolated. Out of these, the
method produces 30 impossible (negative) values. In these cases, we simply replace the
variable by a missing observation. This ensures that these impossible values do not affect our

robustness checks.

We then carry out a similar exercise for the proportion of area under irrigation. First, we
define the proportion of net irrigated area as the ratio of net irrigated area to net cropped
area. Generating this variable results in five observations which have impossible (above 1)
values. In three of these cases, since the values are below 1.05 we replace them by 1. We
replace the two values that exceed 1.05 with a missing observation. Yet, after creating this
variable, there are still 1,090 missing observations. Most of these occur due to missing data
on net irrigated area. As such, we use the interpolation command with the extrapolation
option and replace the (38) impossible (negative) values by missing values. For the remaining
missing values we interpolate (with the extrapolate option) the proportion of net irrigated

area and replace the negative values with a missing observation.
Generating additional variables (excluding drought indices)
We generate a number of additional variables:

e Rural population per hectare; obtained by dividing the rural population by gross
cropped area

e Total cereal quantity produced; obtained by summing the quantity produced of each
individual type of cereal

e Total cereal area; obtained by summing the areas devoted to each individual cereal

e Cereal yield; obtained by dividing the total quantity of cereal by total cereal area

e Individual cereal yield; obtained for each cereal by dividing total production by the

total area devoted to a particular cereal
Generating drought indices

Crucial to our analysis is the construction of a novel drought index. For our purposes, we

develop four drought indices. Below we describe the steps we carry out for each one.
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Yu-Babcock index

We denote: total rainfall over the growing season TR;;; the mean of total rainfall over the
growing season over 1956-2009 LTAR;; and, the standard deviation of TR;; as sdTR;. We
then obtain the standardized variable using the following formula:

TR, — LTAR;

ZTRy = —rp
L

We proceed analogously for our CDD;; measure. Let: CDD;; be cumulative degree days above
the long-term mean temperature of a district during the growing season; LTACDD; be long-
term average cumulative degree days in the growing season; and, sdCDD; be the standard
deviation of CDD;;. We compute the standardized variable:

CDD;, — LTACDD;

ZCDDw = —— 30D,
l

Following this, we use the following to compute the Yu-Babcock index:
BYU;; = —max(0,ZHDD;;) * min(0, ZTR;;)
Normalized indices

For the remaining indices, we use a normalized variable between 0 and 1, rather than a
standardized value. We construct a variable, MTR;;, which is simply the negative of TR;;
(i.e. MTR;; = —TR;;). The following is estimated to obtain NTR;; and NCDD;;:

MTR; — MTR™"
MTRI"@* — MTRM™"

NTR;, =

CDD;, — CDDI™™
CDD™** — CcDD/™™"

NCDD;, =

We differ from Yu and Babcock (2010) in creating a normalized version of the rain and
temperature variables such that they vary strictly between 0 and 1, with 1 indicating the most
extreme value (the highest temperature and lowest rainfall) and 0 indicating the lowest value.
From these two variables, we then create a normalized rainfall-temperature index NRT I,

which is simply a product of these variables:
NRTI;; = NTR;; * NCDD;;

From this, we obtain three additional indices. First:
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DI1l.. = {NRT]it if ZTR;; < 0 and ZHDD;, > 0
" 0 otherwise
This is equivalent to a normalized version of the Yu-Babcock (2010) index. It only takes a non-

zero value for events where rainfall deficiency and temperature are above average.

Second, we create our cold drought index analogously, using the following:

DI2.. = {NRTIit if ZTR;; <0 and ZHDD;; < 0
o 0 otherwise
This is the category omitted by Yu and Babcock. It only takes a non-zero value for events

where rainfall deficiency is above-average and temperature is below average.
Finally, we create a third index, which combines DI1;;and DI2;,:

NRTI, if ZTR;; < 0

DI12;, =
i { 0 otherwise

This index takes non- zero values for all events where precipitation is below average.

The three main strengths of this index are that it: (i) defines all potential dry events; (ii) takes
into account both temperature and rainfall; and, (iii) is increasing in temperature and rainfall
deficiency. The main strength vis-a-vis the Yu and Babcock’s index is that, by using the
normalized negative of rainfall, we are able to construct an index that accounts for all
potential types of drought without running into the problem of negative values that emerges

from the interaction of the standardized variables.

Our index, however, still has four potential drawbacks. First, the normalization process is
bounded between 0 and 1 which means that if a given district has a very large outlier in a
given year but records lower values in other years then this would indicate a low value in the
drought index thus masking what might have been a very bad drought year. This problem is
less likely to arise in the standardized index. The second potential weakness arises from the
multiplicative nature of the index. Thus, whenever temperature is close to 0 this can lead to
a very low value of the drought index despite very deficient rainfall. Note, however, that this
problem is only likely to arise for the DI2;; index, and also applies to Yu and Babcock’s index.
Third, similar to their index, our index does not take into account intra-seasonal deficiencies
in rainfall, which have been shown to have important impacts on agricultural productivity,
e.g. Fishman (2016). Finally, similar to most drought indices, our index does not take into

account (rare) multi-year droughts because this would require an index with ‘memory’ that
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takes into account soil moisture conditions. That said, since drought in India is mainly driven
by variation in the annual monsoon, we argue that using an annual measure of monsoon

rainfall is of greater relevance when estimating drought impact in our setting.

To ensure that the multiplicative relationship is not driving our results we also create a series
of additive indices, which conceptually are very similar to our multiplicative indices.

Specifically, the normalized additive rainfall temperature index, NARTI;;, is constructed as:
NARTI;; = NTR;; + NCDD;;

The only difference is that NRTI;; is the product of rainfall and temperature while NARTI;;

is additive. From the latter, we have the following:

ADDI1;, = {NARTIit if ZTR; <0 and ZCDD; > 0
N 0 otherwise
ADDI2., = {NARTIit if ZTR <0 and ZCDDy; < 0
o 0 otherwise
ADDI12;, = {NARTIit if ZTR; <0
. 0 otherwise

where ADDI1;;, ADDI2;;and ADDI12;,are the additive equivalents to DI1;;, DI2;; and
DI12,,.

As a robustness check, we construct each of these indices for three distinct periods (i.e. June-
September, May-December, and January-December) for our rain and temperature variables.

We also inspect the correlations among all the indices. They are very high.
Determining the sample and generating trends

After developing the drought indices, we create a data file which includes only the
observations between 1966 and 2009, i.e. our sample period. This choice is purely driven by
data availability. Prior to 1966, our dependent variables (production and yields) are missing
from the ICRISAT dataset and hence, would have resulted in districts being dropped. Prior to
starting our analysis, we also dropped any districts for which at least one observation is
missing in order to keep a balanced panel. We then generate district-specific quadratic trends

using the following:
trend =t — 1965

trend_sq = trend?
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where t denotes the year.
9.2. (B) — Estimating Economic Impact

As is made clear in the main text, the cost estimates generated in this paper are based purely
on yield losses, without taking into account any potential changes in the cultivated area.
Specifically, our cost estimates are derived using a series of seven steps. We detail all the

assumptions and steps used throughout and discuss their relative strengths and weaknesses.

Step 1 - Obtain a national estimate of crop prices and aggregate cereal price for each year:

Crop prices: We generate a national weighted average of crop price by year (using the egen
command and the user-written option wtmean), where the weight is determined by area of
land under cultivation. For millet the process is slightly different since there are two kinds of
millet in our sample (pearl millet and finger millet). As a result, we first generate, for each
year, a weighted average of millet prices at the district-level. We then sum the total area
under millet production (area under pearl millet + area under finger millet) and use this to
establish a national weighted average millet price for a given year. Note that the egen
command automatically adjusts the computation for missing data. As a result, districts that

do not report prices for a given year are not included in the weighted average.

We then use 2008 crop prices to estimate prices (and costs) in USD: aggregate cereal price
index (24.147 USD/quintal); rice (29.947 USD/quintal); wheat (22.360 USD/quintal); maize
(16.125 USD/quintal); barley (19.089 USD/quintal); sorghum (18.88 USD/quintal); and, millet
(17.5 USD/quintal). These prices are obtained by obtaining the weighted average of crop-
specific prices in India for 2008 (in Rupees) and converting this by the averages of the 2008
monthly exchange rates extracted from: http://www.x-

rates.com/average/?from=USD&to=INR&amount=1&year=2008.

All of the tables are also constructed using nominal yearly prices in Rupees and are available

from the authors upon request.
Weaknesses and strengths of the assumptions:

National prices. For any given year, there are large differences in prices across districts. It
could be argued that prices at the district- or state-level may be more appropriate. However,

there are issues with missing price data at the district-level and, to a lesser extent, at the
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state-level even for cases where there is a non-zero quantity reported. This is the main reason

why we opt for national prices.

Using fixed prices in USD: Using a fixed price throughout the sample period implies that the
estimates of costs will vary depending on the chosen year since the choice of the year will, by
definition drive both the exchange rate and the price level. Yet, output losses in the early
periods are made comparable to losses in later periods since they are given the same value.
Using nominal prices could lead to the economic cost of drought artificially increasing over
time as nominal prices in most cereals have trended upwards over the sample period. In any
case, we have also performed this exercise using nominal prices in rupees and the results are

available from the authors upon request.

Step 2 - Estimate the regression of interest:

We estimate the following linear regression in which the coefficients for the two types of
droughts are estimated separately, and there are: (i) no dummy variables; (ii) no controls; (iii)

district-specific quadratic trends; (iv) district fixed effects; and, (v) year fixed effects.
In(yire) = @; + B¢+ 81 *t + 83 xt*> + 0, DI1;, + 0, DI2;; + €4

Step 3 - Estimate the vield losses:

After Stata has generated the output for the regression in Step 2, we operationalise the

following steps:

e Step 3.1 — Predict the natural logarithm of yield for drought when DI12;; > 0 (i.e.
when the given district is drought affected). We do this by using the predict command
following the estimation of the regression before replacing observations not affected
by drought with an empty observation. We denote this variable lyhat,. Note, to limit
potential biases in the estimates of overall costs, we remove districts with implausible
predicted yields, which we define as yields below 100 kg/ha and above 5 tonnes/ha).
This assumption, however, affects very few observations, specifically 25 predicted
values out of over 6,000 events in the full sample.

e Step 3.2 — Predict the natural logarithm of the yield variable under no drought (i.e.
DI12;; = 0;0r DI1;; = 0 and DI2;; = 0). We rename the variables DI1;;and DI2;;
(e.g. they temporarily become DIloriginal;; and DI2original;;) and create two new

temporary variables: DI1;; = 0 and DI2;; = 0. We then use the predict command to
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obtain predicted yield and a variable denoted lyhat, ;. The temporary DI1;; and
DI2;; variables are deleted, and DIloriginal;; and DI2original;, are, respectively,
renamed DI1;; and DI2;;. We replace lyhat,; with an empty observation for every
case where DI12;; = 0 (non-drought affected case). Note that when we estimate the
predicted values using dummy variables, we also switch the dummy variable equal to
zero when we replace the index coefficient with zero.

Step 3.3 — Obtain yield values. All our predicted values are in logs. We thus convert
these variables into levels and denote these variables yhat,; and yhat,.

Step 3.4 — Obtain predicted vyield losses by simply subtracting the predicted yield
under no drought (Step 3.2) by the actual predicted yield (Step 3.1) for all cases where
DI12;; > 0. Formally, we calculate ylosses = yhat,; — yhat,.

Step 3.5 — Obtain predicted yield losses by drought type by simply subtracting the
predicted yield under no drought by the actual predicted yield for each type of drought
separately. Thus, we estimate: ylosses; = yhat,y — yhaty if DI1;; > 0; and,
ylosses, = yhat,; — yhat, if DI2;; > 0. Note the two types of drought are
mutually exclusive (i.e. it is impossible for a district to simultaneously have a hot and

a cold drought).

Step 4 - Estimate district-level production losses:

This requires three further steps:

Step 4.1 - Convert land area to ha. As highlighted in the supporting documentation,'®
the land-use data is in 000’s of ha. As a result we simply multiply cereal area by 1,000
to derive the cereal area in ha. Note that we do not model potential land-use changes
as aresponse to a drought event, which is likely to happen. In other words, we exclude
the possibility that land under cereal production might decline in a drought year given
our focus on developing an inclusive drought index and estimating the marginal
effects of drought on agricultural production.

Step 4.2 - Convert yield losses to 1,000t/ha. Currently, our yield losses are in t/ha. We
thus convert the yield losses to 1,000t/ha by dividing ylosses by 1,000.

16 See: http://vdsa.icrisat.ac.in/Include/document/all-apportioned-web-document.pdf
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e Step 4.3 — Get the total district production losses (in 1,000t). Obtain the product of
the variable obtained in Step 4.1 by that obtained in Step 4.2.

Step 5 - Estimate the district-level cost of production losses:

To do this we perform two further steps:

e Step 5.1 — Convert price data to million USD/1,000t. For the results shown in the
paper, our price data are in USD per quintal (as explained in Step 3.1) and our
production loss data (estimated in Step 4.3) are in 1,000t. To obtain the price data in
million USD per 1,000t we divide our price level by 100. Note, a quintal is 100kg. To
convert it into 1,000t (1,000,000kg) we multiply the price data by 10,000. However,
since we want the data in million USD rather than USD, we divide this by 1,000,000.
Thus, price*10,000/1,000,000 = price/100

e Step 5.2 — Obtain total value of production losses. After obtaining prices in million
USD/1,000t we multiply the variable derived in Step 5.1 by the variable derived in Step
4.3 to obtain the total value of production losses in USD millions. Note, for our

estimates in rupees, we apply the exact same procedure using yearly nominal prices.

Step 6 - Estimate total yearly production losses:

To obtain this measure in 1,000t we sum estimated total production losses of each affected
district in a given year. We use the total function of the egen command. Note that the value

in the table represents the unweighted average yearly loss.

Step 7 - Estimate total yearly production costs:

To obtain this measure in millions of rupees, we simply sum the estimated total value of the
production losses of each affected district in a given year. We use the egen command with
the total function. Note again that the value in the table represents the unweighted average

yearly loss.
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APPENDIX FIGURES AND TABLES

Figure A1l: Proportion of drought-affected districts (by type, May-December grow-
ing season)
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(a) Type 1 events (“hot droughts") (b) Type 2 events (“cold droughts")
(below-average rain & above-average temperature) (below-average rain & below-average temperature)

Notes: Type 1 events denote events where rainfall was below-average and temperature was above average. Con-
versely, Type 2 events refer to events where both rainfall and temperature were below-average. The rainfall average
variable is calculated as the district mean cumulative rainfall from May-December from 1956-2009. The average
temperature variable is calculated as the average degree days above the mean season temperature [rom May-
December.

The solid vertical lines represent the years considered by the Indian Government as All-India drought years.
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N type 1 - N type 2 events

Figure A2: Type 1 droughts in excess of Type 2 droughts, May-December growing

season
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Notes: The scatter points highlight the total number of droughts (by type) in a given year. In the case of Type 1
droughts (red scatter points) these can be interpreted directly (i.e. 200 means that 200 districts were affects by a
Type 1 drought). However, in the case of the Type 2 droughts, these should be interpreted as the negative of the
number (Le. il the observed value is -100, this means there were 100 districts affected by Type 2 droughts).
Bar graphs show the number of affected districts affected by Type 1 droughts in excess of the number affected by
Type 2 droughts. As a result a result a value of 50 would mean that there were 50 more districts affected by a
Type 1 drought than affected by a Type 2 drought in a given year. The converse applies to a negative number,
which highlights a higher number of districts affected by cold droughts in a given year.

The solid vertical lines represent the years considered by the Indian Government as All-India drought years.
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Table A1l: Full sample robustness checks 1

Cluster (state) Squares Controls
Variables 1 3 4 5 6 T 8 9
Drought index (Type 1)  -0.19 -(.238% -0.068 ~0.159FF -0.11 ~(.148%FF
(0.049) (0.056) (0.042) (0.045) (0.016) (0.018)
Drought index? (Type 1) -0.201%%%F -0, 126*
(0.073) (0.074)
Drought index (Type 2) -0.301* S(1.269FFF
(0.078) (0.038)
Dronght index? (Type 2)
(0.296)
Drought index (2 types) -0. -0.1617
(0.040) (0.018)
Drought index? (2 types) -0.004

(0.064)

Constant -0.346* S0.347FFF 0,363 _(.328 S(.313FFF 0.558 0.591
(0.0 (0.033) (0.032) (0.022) (0.022) (0.022) (0.197) (0.198)

Time trends v v v v v v v v
District fixed effects v v v v v v v v
Year fixed effects v v v v v v v v
Controls v v
Number of observations 12100 12100 12100 12100 12100 12100 8888 8888 8888
Number of districts 275 275 275 275 275 275 202 202 202
R-squared a 0.705 0.712 0.711 0.706 0.713 0.711 0.762 0.766 0.765
R-squared w 0.719 0.726 0.725 0.72 0.727 0.725 0.775 0.778 0.777

Notes:

standard ervors at the state level

anc

]

Values in parentheses denote clustered standard errors at the district level for columns 4-9
W oW

For columns 1-3 they denote clustered
denote statistical significance at the 10%. 5% and 1% level, respectively. District trends denote

a district-specilic quadratic trend. In columns 7-9, we include 4 controls and their squares. These include the proportion of net irrigated area,

the total cereal area, the total rural population density (rural population divided by gross cropped area) and fertilizer intensity. In columns 7-9

all districts for which at least one observation is missing for the control variables are dropped and this is the reason behind the decrease in the

munber of districts

Table A2: Full sample robustness checks 2

May-December Annual Degree days (30 degrees) Additive
Variables 1 3 1 5 6 7 8 9 10 11 12
Drought index (Tvpe 1) 0.210%*% _0, 251+ 0,208+ L2500 (0,182 L0230+ 0,065 0,083+
(0.018)  (0.021) (0.018) (0.023)  (0.026) (0.006)  (0.007)
Drought index (Type 2) 2 k 0,420+ 0,086+
(0.030) (0.045) (0.008)
Drought index (2 types) 0. 20474 INIEE S
(0.024) (0.007)
Constant 0,346+ 0.319%#+ (. 4220FF () 3R2FFF (3541 | L0 3THFHE L 348 ) 3464
(0.023) (0.023) 0.024)  (0.024)  (0.023) | (0.021)  (0.021)  (0.021)
Lime trends v v v v v v v v
District fixed effects v v v v v v v v
Year fixed eflects v v v v v v v v
Controls
Number of observationsN 12100 12100 12100 12100 12100 12100 11352 11352 12100 12100 12100
Number of districts 275 275 275 275 275 275 258 258 275 275 275
Resquared a 0.711 0.716 0.716 0.71 0.716 0.716 0.704 0.71 0.704 0.711 0.711
Resquared w 0.725 0.73 0.73 0.724 0.73 0.73 0718 0.724 0.719 0.725 0.725

Notes

to construct the index

Values in parentheses denote clustered standard errars at the district level.
trends denote a quadratic trend
In column 1-3 the May-December period is used. whereas in columns 4-6 annual data is used

and *** denote statistical significance at the 10%, 3%
In columns 1-6 the drought index is construeted in the same way as the drought index in the paper
In columns 7-9, the index is built over the June.

and 1% level, respectively. District

The only difference is the growing season used

period, but instead of using the average seasonal temperature for the construction of the hot degree-days variable we use an absolute threshold of 30 degrees. As a result, given that
some districts do not experience daily temperatures this high, some districts drop from the sample since in a number of districts the harmful degree-days variable is always 0, which

implies the drought index is
variable

these two variable

are added

the absolute value of 30 degrees

also equal to 0 and does not vary. Finally, in columns
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10-12, instead of mulriplying the normalized negative rainfall by the normalized harmful degree-days
In this specification, the average hot degree-days is hased on the average June-September daily temperature between 1956-2009, rather than
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Table A3: Rice sample robustness checks 1

(0.045) (0.

Cluster (state) Squares Controls
Variables 1 2 3 1 5 § T 8 9
Drought index (Type 1) -0.249%%% 0.303%** -0.123 0. -0.205FF 0.255*

2) (0.078)  {D.080) (0.0200 (0.
-0.109

(.

Drought index2 (Type 1)

Drought index (Type 2) -0.469 -().38 -0.386%*

(0.080) (0.112) (0.039)
Drought index2 (Type 2) -0.281

(0.405)
Dronght index (2 types) : (336 S0.271FFF
(0.054) (0.061) (0.023)
Dronght index2 (2 types) 0.024
(0.095)

Constant SOLBG2FE (3341 (333 L0 235%FF L0107 L ISOFFR | 1 103 134 1 ToREE

(0.060)  (D.056)  (0.056) | (0.034)  (0.034)  (0.035) | (0.243)  (0.239)  (0.240)

Time trends v v v v v v v v v
District fixed effects v v v v v v v v v
Year fixed effects v v v v v v v v v
Controls v v v
Number of observations 10560 10560 10560 10560 10560 7832 7832 7832
Number of districts 240 240 240 240 240 178 178 178
R-squared a 0.532 0.542 0.541 0.542 0.541 .564 0.57 0.57
R-squared w 0.555 0.565 0.563 0.565 0.563 0.587 0.593 .592

Notes: Values in parentheses denote clustered standard errors at the district level for columns 4-9. For columns 1-3 they denote clustered
R and M denote statistical significance at the 10%, 5% and 1% level, respectively. District trends denote
a district-specilic quadratic trend. In columns 7-9, we include 4 controls and their squares. These include the proportion of net irrigated area,

standard errors at the state level.
the total cereal area, the total rural population density (rural population divided by gross eropped area) and fertilizer intensity. In columns 7-9

all districts for which at least one observation is missing for the control variables are dropped and this is the reason behind the decrease in the
mumnber of districts.

Table A4: Rice sample robustness checks 2

May-December Annual Degree days (30 degrees) Additive
Variables 1 2 3 ] 5 [ 7 8 9 10 11 12
Drought index (Type 1) -0.250%% 0.300"* 02507 0.308%FF 0.207FFF 276+ 0.0867FF 0. 100+
(0.020) (0.022) (0.020) (0.023) (0.021) (0.026) (0.008) (0.009)
Dronght index (Tvpe 2) 0.317%+F 0.346%+F GO2FFE -
(0.028) (0.031) (0.068) (0.009)
Dronght index (2 types) 0.31200F ().325++ 0. 110+
021 (0.0 (0.026) (0.008)
Constant D238 218FFF 02167 | L0.204FFF 0 195%FF (), 188 02428 0 2507% .220%FF (2|8
(0.034)  (0.033) (0,034 | (0:035)  (0.033)  (0.034) (0.034)  (0.034)  (0.033)
Time trends v v v v v v v v v
District fixed effects v v v v v v v v v
Year fixed effects v v v v v v v v v
Controls
Number of observations 10560 L0560 L0560 10560 10560 10560 98 10560
Number of districts 240 240 240 240 240 240 2 240
Resquared a 0.538 0.5145 0.545 0.538 0.546 0.516 0.514 0.51 0.542
Resquared w 1.561 0.567 0.567 0.561 1.56G9 1.5G8 0.563 0.563 0
Notes: Values in parentheses denote clustered standard errors at the district level. *, ** and *** denote statistical significance at the 10%, 5% and 1% level, respectively. District

trends denote a quadratic trend. In columns 1-6 the drought index is constructed in the same way as the drought index in the paper. The only difference is the growing season used

to construct the index. In column 1-3 the May-December period is used, whereas in columns 4-6 annual data is used. In columns 7-9, the index is built over the June ptember

period, but instead of using the average seasonal temperature for the construction of the hot degree-days vi

iable we use an absolute threshold of 30 degrees. As a result, given that
le i

some districts do not experience daily temperatures this high, some districts drop from the sample since in a number of districts the harmiul degree-days variz always 0, which
implies the drought index is also equal to 0 and does not vary. Finally, in columns 10-12, instead of multiplying the normalized negative rainfall by the normalized nful de
variable, these two variables are added. In this specification. the average hot degree-days is based on the average June-September daily temperature between 1956-2000, rather than
the absolute value of 30 degrees

o-dlays
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Table A5: Wheat sample robustness checks 1

Cluster (state) Scuares Controls
Variables 1 3 4 5 [§] T 8 9
Drought index (Type 1] -0.128%%% _(.161%#* S0L123FFE ) 8GR S0 T00FHF () 1260
(0.028) (0.031) (0.039) (0.039) (0.018) (0.018)
Drought index? (Type 1) -0.007 0.014
(0.064) (0.064)
Drought index (Type 2) -0.263 0.041 (), 183
(0.078) (0.084) (0.035)
Drought index? (Type 2) ~1.O6GTF
(0.293)
Drought index (2 types) -0.17 -0.2 -0.13:
(0.032) (0.032) (0.017)
Drought index? (2 types) 0.087
(0.054)
Constant S0.442%FF ), 423 S0.422°FFF 10, 330F 8 _(.300%F _0.300% -0.380% -0).348% -(.342%
(0.062) (0.062) (0.063) (0.027) (0.028) (0.029) (0.197) (0.202) (0.202)
Time trends v v v v v v v v v
District fixed effects v v v v v v v v v
Year fixed effects v v v v v v v v v
Controls v v v
Number of observations 8756 8756 8756 8756 8756 8756 6776 G776 6776
Number of districts 199 199 199 199 199 199 154 154 154
R-squared a 0.713 0.716 0.716 0.713 0.717 0.716 0.761 0.765 0.763
R-squared w 0.727 0.731 0.73 0.727 0.731 0.73 0.77 0.775 0.775

Notes: Values in parentheses denote clustered standard errors at the distriet level for eolumns 4-9. For columns 1-3 they denote clustered
standard errors at the state level. * ** and *** denote statistical significance at the 10%, 5% and 1% level, respectively. District trends denote
a district-specific quadratic trend. In columns 7-9, we include 4 controls and their squares. These include the proportion of net irrigated area,
the total cereal area, the total rural population density (rural population divided by gross cropped area) and fertilizer intensity. In columns 7-9
all districts for which at least one observation is missing for the control variables are dropped and this is the reason behind the decrease in the
number of districts.

Table A6: Wheat sample robustness checks 2

May-December Annual Degree davs (30 degrees) Additive
Variables 1 2 3 ! 9 5 T 8 9 10 11 12
Drought index (Type 1) 014775 0 162FFF 0. T3 0 1677 O T2 a2+ 00457 0 .058FFF
(0014 (0.015) (0.014)  (0.016) 0.014)  (0.015) (0.006)  (0.006)
Drought index (Type 2) 0,124+ 0161+ 0,251 0,050+
(0.021) (0.022) (0.032) (0.007)
Drought index (2 types) 0,157+ 01661 IR R (.058FFF

(0.014) (0.015) (0.016) (0.003)

Constant 0,319 0. 315%F 308+ 0361 0334+ i

(0.027) (0.028) (0.027) (0.028) (0.028)
Time trends v v v v
District fixed effects v v v v
Year fixed effects v v v v
Controls
Number of observations 8756 8756 8756 8756 8756 8756 8712 8712 8712 8756 8756 8756
Number of districts 199 199 199 199 199 199 198 198 198 199 199 199
Resquared a 0.716 0.717 0717 0715 0.717 0.717 0.712 0.715 0.716 0.712 0.716 0.716
Resquared w 0.73 0.731 0.731 0.73 0.732 0.732 0.727 0.729 0.73 0.727 0.73 0.73
Notes: Values in parentheses denote clustered standard ervors at the district level. *, ** and *** denote statistical significance at the 10%, 5% and 1% level, respectively. District

trends denote a quadratic trend. In columns 1-6 the drought index is constructed in the same we ason used

to construct the index. In column 1-3 the May-December period is used, whereas in columns

as the drought index in the paper. The only difference is the growin
annual data is used. In columns 7-9, the index is built over the June

eptember

ys variable we use an absolute threshold of 30 degrees. As a result, given that
number of districts the harmful degree-days variable is always 0, which

period, but instead of using the average seasonal temperature for the construction of the hot ¢
some districts erience daily temperatures this high, some districts drop from the sample
implies the drought index is also equal to 0 and does not vary. Finally, in columns 10-12, instead of multiplying the normalized negative rainfall by the normalized harmful deg
variable, these two variables are added. In this specification. the average hot degree-days is based on the average June-September daily temperature between 1956-2009, rather than
the absolute value of 30 degrees

since in

do not ex

eo-days
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Table A7: Maize sample robustness checks 1

Cluster (state) Squares Controls
Variables 1 2 3 4 5 6 7 8 9
Drought index (Type 1) -0.138%* -(1.118 018177 0.25077% -0.09477% -0.057F
(0.057)  (0.072) (0.063)  (0.065) (0.028)  (0.031)
Drought index? (Type 1) -(.520%%% -(0.585%FF
(0.102) (0.102)
Drought index (Type 2) 0.156 1.140%** 0.264%%*
(0.147) (0.155) (0.060)
Drought index? {Type 2) -3.322%F
(0.461)
Drought index (2 types) -0.084 0.336%%* -0.017
(0.082) (0.056) (0.031)
Drought index? (2 types) -(). 7127
(0.087)
Constant -0.141 0,152 -0.154 | -0.2097FF -0.22477F -(0.241777)| (0.182 0.242 0.13
(0.094)  (0.090) (0.087)] (0.050) (0.051) (0.051) (0.183) (0.182)  (0.184)
Time trends v v v v v v v v v
District fixed effects v v v v v v v v v
Year fixed effects v v v v v v v v v
Controls v v v
Number of observations 7656 7656 7656 T656 6248 (G248 6248
Number of districts 174 174 174 174 174 174 142 142 142
R-squared a (.398 0.398  0.396 | 0.4 0.405 0.403 0.414 0.417 0.413
R-squared w 0.428 0.429  0.426 | 0.431 0.436 0.433 0.446 0.448 0.444

Notes: Values in parentheses denote clustered standard ervors at the district level for columns 4-9. For columns 1-3 they denote clustered
standard errors at the state level. *, ** and *** denote statistical significance at the 10%, 5% and 1% level, respectively. District trends
denote a district-specific quadratic trend. In columns 7-9, we include 4 controls and their squares. These include the proportion of net
irrigated area, the total cereal area, the total rural population density (rural population divided by gross cropped arca) and fertilizer
intensity. In columns 7-9 all districts for which at least one observation is missing for the control variables are dropped and this is the
reason behind the decrease in the munber of districts,

Table A8: Maize sample robustness checks 2

May-December Annnal Degree days (30 degrees) Additive
Variables 1 2 3 1 5 (3 7 8 9 10 11 12
Dronght index (Type 1) 011355 () 085+ 0 108FFF 0 OR1FHH 01135 00947+ 0.038F%F 0025+
(0.022)  (0.026) (0.022)  (0.026) (0.029)  (0.033) (0.009)  (0.010)
Drought index (Tvpe 2) 0.168%++F 0177+ 0.154%* (.058%+F
(0.044) (0.042) (0.068) (0.014)
Dronght index (2 types) 0.053%* 0.050% 0.081%* 0.004
(0.027) (0.026) (0.032) (0.0107)
Constant 0.219%%F 0233406 0276790 | L0.207FFF L0, 224% 0 27T L0 231 0 24RFHE 02540 L 23100 . (.328+++
(0.047) (0.047) (0.046) (0.049) (0.049) (0.047) (0.051) (0.050) (0.049) (0.051) (0.051) (0.049)
Lime trends v v v v v v v v v v v v
District fixed effects v v v v v v v ' v v v v
Year fixed effects v v v v v v v ' v v v v
Controls
Number of observations 7656 7656 7656 7656 T656 612 612 612 7656 656 T656
Number of districts 174 174 174 174 174 173 173 173 174 174 174
R-squared a 0.397 0.399 0.397 0.399 0.395 0.397 0.397 0.396 0.396 0.399 0.395
Resquared w 0,128 0.13 0,126 0.128 0.129 0,126 0427 0.128 0.427 0.427 0.129 0.425

Notes: Values in parentheses denote clustered standard errors at the district level. *, ** and *** denote statistical significance at the 10%, 3% and 1% level., respectively. District

trends denote a gquadratic trend. In columns 1-6 the drought index is constructed in the same way as the drought index in the paper. The only difference is the growing season used

to construct the index. In column 1-3 the May-December period is used, whereas in colunns 4-6 annual data is nsed. In columns 7-9, the index is built over the June-September

period, but instead of using the average seasonal temperature for the construction of the hot degree-days variable we use an absolute threshold of 30 degrees. As a result, given that

some districts do not experience daily temperatures this high, some districts drop from the sample since in a number of districts the harmful degree-days variable is always 0, which

implies the drought index is also equal to 0 and does not vary. Finally, in columns 10-12, in:
variable, these two variables are added. In this specification, the average hot degree-days is based on the average June-September daily temperature between 1956-2000, rather than
the absolute value of 30 degrees

pad of multiplying the normalized negative rainfall by the normalized harmful degree-days
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Table A9: Millet sample robustness checks 1

Cluster (state) Squares Controls
Variables 1 2 3 4 5 6 7 8 9
Dronght index (Type 1) -0.240%F  -0.287** -0.011 -0.091 EINE RN R
(0.098) (0.111) (0.075) (0.082) (0.033) (0.038)
Dronght index? (Type 1) S0.370F ¥ _0.309FF
0.123)  (0.125)
Drought index (Type 2) -(.381% 0.035 S(.243%HF
(0.200) (0.151) (0.087)
Drought index? (Type 2) S1AL6HFE
(0.111)
Dronght index (2 types) -0.297%* S0.175%% -0.190%+*
(0.112) (0.079) (0.010)
Dronght index? (2 types) -0.205%

(0.115)

Constant SOGTIHFEF 0.G4THFF _ GATHRF | 0. TATEEE L0 T04FFE L) GRTEHRE (. T12FF 0.691%* 0.702%F
(0.049) (0.057) (0.056) (0.041) (0.041) (0.041) (0.306) (0.302) (0.306)
Time trends v v v v v v v v v
District fixed effects v v v v v v v v v
Year fixed effects v v v v v v v v v
Controls v v v
Number of observations 7172 7172 7172 7172 7172 7172 HhH88 5588 5588
Number of districts 163 163 163 165 163 163 127 127 127
R-squared a 0.429 0.434 0.434 0.431 0.435 0.434 0.502 0.504 0.504
R-squared w 0.459 0.163 0.463 0.46 0.465 0.163 0.529 0.531 0.531

Notes: Values in parentheses denote clustered standard errors at the district level lor columns 4-9. For columns 1-3 they denote clustered
standard errors at the state level. * % and *** denote statistical signilicance at the 10%, 5% and 1% level, respectively. District trends denote
a district-specitic quadratic trend. In columns 7-9, we include 4 controls and their squares. These include the proportion of net irrigated area,
the total cereal a

, the total rural population density (rural population divided by gross cropped area) and lertilizer intensity, In columns 7-9
all districts for which at least one observation is missing for the control variables are dropped and this is the reason behind the decrease in the
mumnber of dis

Table A10: Millet sample robustness checks 2

May-December Annnal Degree days (30 degrees) Additive
Variables 1 2 3 1 b G 7 8 9 10 11 12
Drought index (Type 1) -0.2625FF 0,205F+H 0,256 _0.205FFF 0.244%FF 27500 0.078FFF .09 7+
(0.036)  (0.041) (0.037)  (0.012) 0.017)  (0.055) (0.013)  (0.015)
Dronght index {Type 2) 0,205+ 0,266+ (). 278%+* 0074+
(0.049) (0.099) (0.017)
Drought index (2 types) 0,286+ (1.202% %+ (.31 1+ (.088F+*
(0.041) (0.042) (0.051) (0.014)
Constant 0,700FFF 069280, 7028 | 0601 06T 0683 0. TH6TE 0,720 L0696F [ L0, 743 T1eTE ) T2t
(0.039) (0.039) (0.039) (0.040) (0.040) (0.040) (0.041) (0.041) (0.042) (0.042) (0.041) (0.042)
lime trends v v v v v v v v v v v v
District fixed effects Vv v v v v v v v v v v v
Year fixed effects ' v v v v v v v v v v v
Controls
Number of observations 7172 7172 172 7172 T2 172 G952 G952 G952 7172 7172 7172
Number of districts 163 163 163 163 163 163 158 158 158 163 163 163
R-sqnared a 0.136 0.138 0.138 01431 0.138 0.138 0.429 0.431 0,435 0,128 0.431 0.431
R-squared w 0.465 0.467 0.467 0.463 0.467 0.467 0.459 0.461 0.464 0.457 0.461 0.46

Notes: Values in parentheses denote clustered standard errors at the district level. * ** and *** denote statistical significance at the 10%. 5% and 1% level, respectively. District
trends denote a quadratic trend. In columns 1-6 the drought index is constructed in the same way as the drought index in the paper. The only difference is the growing season used
to construct the index. In column 1-3 the May-December period is used, whereas in columns 4-6 anmual data is used. In columns 7-9, the index is built over the June-September
period, but instead of using the average seasonal temperature for the construction of the hot degree-days variable we use an ahsolute threshold of 30 degrees. As a result. given that
some districts do not experience daily temperatures this high, some districts drop from the sample since in a number of districts the harmful degree-days variable is always 0, which
implies the drought index is also equal to 0 and does not vary, Finally, in columns 10-12, instead of multiplying the normalized negative rainfall by the normalized harmful degree-days
variable, these two variables are added. In this specification, the average hot degree-days is based on the average June-September daily temperature between 1936-2009, rather than
the absolute value of 30 degrees
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Table A11: Sorghum sample robustness checks 1

Cluster (state) Senares Controls
Variables 1 2 3 4 5 6 7 8 9
Drought index (Type 1) -0.159% -(.188* 0.119 0.082 S0.007FEE (T 14FEF
(0.074)  (0.086) (0.004)  (0.105) (0.028)  (0.031)
Drought index2 (Type 1) S0.453% (), 420
(0.149)  (0.156)
Drought index (Type 2) ().302+%
(0.185)
Drought index2 (Type 2) -2.063%FF
(0.527)
Drought index (2 types) -0.195% 0.008 S(.115%EF
(0.089) (0.099) (0.031)
Drought index2 (2 tvpes) -0.344FF
(0.146)
Constant S0.63TFEE 06367 | 0. 7T3THEE LOUTI6FHE 0.690%FF Rk -0.056
(0.060)  (0.066)  (0.067) | (0.050)  (0.049)  (0.019) (0 (0.205)
Time trends v v v v v v v v
District fixed effects v v v v v v v v
Year fixed effects v v v v v v v v
Controls v v v
Number of observations 6908 6908 6908 6908 6908 6908 6380 6380 6380
Number of districts 157 157 157 157 157 157 145 145 145
R-squared a 0.335 0.337 0.337 0.337 0.34 0.338 .366 0.367 0.367
R-squared w 0.369 0.371 0.371 0.371 0.374 0.373 0.4 0.4 0.4

Notes: Values in parentheses denote clustered standard errors at the district level for lulluuuk 4-9. For columns 1-3 they denote clustered
standard ervors at the state level. *, ** and *** denote statistical significance at the 10%, 5% and 1% level, respectively. District trends denote
a district-specilic quadratic trend. In columns 7-9, we include 4 controls and their squares. These include the proportion of net irvigated area,
-9
all districts for which at least one observation is missing for the control variables are dropped and this is the reason behind t lu decrease in the
number of districts,

the total cereal area, the total rural population density (rural population divided by gross cropped area) and fertilizer intensity. In columns

Table A12: Sorghum sample robustness checks 2

May-December Annual Degree days (30 degrees) Additive
Variables 1 2 3 . b 6 7 8 9 10 11 12
Drought index (Type 1) -0.198%FF 215+ 02045 ) 208 0.132F5F 0 158 0.050%FF 00507+
[ll 030 (0.036) (0.033) (0.038) (0.036) (0.042) (0.011) (0.013)
Drought index (Type 2) 0.102%* 0.105% 0.232H++ 0.042F+F
(0.047) (0.054) (0.085) (0.016)
Drought index (2 types) 0,201+ 0,214+ 0,197+ 0,053+
(0.036) (0.038) (0.039) (0.013)
Constant D.T03FF0GOTHEF O TITHR ] 06TIRY 06T 06007 | 0 FT2EE 0 73T 0. 72000 0. 7H0F 0. 7L 0 7oR
(0.049) (0.048) (0.047) (0.048) (0.048) (0.046) (0.049) (0.048) (0.047) (0.049) (0.048) (0.045)
Time trends v v v v v v v v v v v v
District fixed effects v v v v v v v v v v v v
Year fixed effects v v v v v v v v v v v v
Controls
Number of observations 6908 6908 6908 G908 GI08 GI0S 6732 6732 6732 6908 6908
Number of districts 157 157 157 157 157 157 153 153 153 157 157
Resquared a .31 0.341 0.34 0.311 0,342 0.3141 1.338 0.339 0311 0.334 0,335
Resquared w 0.371 0.375 0.374 0.375 0.376 0.375 0.372 0.371 0.375 0.368 0.369
Notes: Values in parentheses denote clustered standard errors at the district level. *, ** and *** denote statistical significance at the 10%, 5% and 1% level, respectively

trends denote a quadratic trend. In columns 1-6 the drought index is constructed in the same way as the drought index in the paper. The only difference is the growing
to construct the index. In column 1-3 the May-December period is used, whereas in columns 4-6 annual data is used. In columns 7-9, the index is built over the Ju
period, but instead of using the average seasonal temperature for the construction of the hot degree-days variable we use an absolute threshold of As a result, given T]m
some districts do not experience daily temperatures this high, some districts drop from the sample since in a number of districts the harmful degree-days variable is always 0, which
implies the drought index is also equal to 0 and does not vary. Finally, in columns 10-12, instead of multiplying the normalized negative rainfall by the normalized harmful deg
variable, these two variables are added. In this specification, the average hot degree-days is based on the average June-September daily temperature between 1956-2000, rather than
the absolute value of 30 degrees

ro-days
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Table A13: Barley sample robustness checks 1

Cluster (state) Squares Controls
Variables 1 2 3 4 B} 6 T 5 9
Drought index (Tvpe 1) -0.013 -0.032 -0.046 -0.007  -0.025
(0.035) (0.048) (0.048) (0.027)  (0.028)
Drought index? (Type 1) 0.054
(0.076)
Drought index (Tvpe 2) -0.152 RINE
(0.078) (0.045)
Drought index? (Type 2)
Drought index (2 types) -0.051 -0.136%F* -0.042
(0.049) (0.043) (0.027)
Drought index2 (2 types) 0. 149%*
(0.070)
Constant S0201FFF LQ280%FF L0 280FFF | L. 348FFF _(,325 L. 31378 | 0,223FF _0.242°F  _0.210%*
(0.048) (0.052) (0.049) (0.040) (0.040) (0.038) (0.095)  (0.095) (0.093)
Time trends v v v v v ' v v v
District fixed effects v v v v v v v v v
Year fixed effects v v v v v ' v v v
Controls v v v
Number of observations 3432 3432 3432 3432 3432 3432 3432 3432 3432
Number of districts 78 78 78 78 78 78 78 78 78
R-squared a 0.767 (.768 0.767 0.767 (.768 0.767 (.768 (.768 (.768
R-squared w .78 (.781 .78 0.78 (.781 0.781 0.781 (.782 (.782

Notes: Values in parentheses denote clustered standard ervors at the district level for columns 4-9. For columns 1-3 they denote clustered
standard ervors at the state level, * *# and *** denote statistical significance at the 10%, 5% and 1% level, respectively. District trends denote
a district-specific quadratic trend. In columns 7-9, we include 4 controls and their squares. These include the proportion of net irrigated area,
the total cereal area, the total rural population density (rural population divided by gross cropped arvea) and fertilizer intensity, ln colwmns 7-9
all districts for which at least one observation is missing for the control variables are dropped and this is the reason behind the decrease in the
number of districts.

Table Al14: Barley sample robustness checks 2

May-December Annnal Diegree days (30 degrees) Additive
Variables 1 2 3 1 o G T 8 9 10 11 12
Drought index (Type 1) 00717 0,067 0.070FFF 0073 0.011 0.033 0.006 0.013
(0.022) (0.023) (0.022) (0.023) (0.027) (0.028) (0.009) (0.009)
Drought index {Type 2) 0.019 0.016 0,173%%* 0,032+
(0.031) (0.038) (0.045) (0.010)
Drought index (2 types) 0.055%F 0.067FFF 0.047% 0.020F+F
(0.022) (0.026) (0.008)
Constant 0.288FFF (202458 30405 | L028TFHF 0,287 2 03518 L0, 3270 031000 L0348 FFF 03318 0 313t
(0.038) (0.038] (0.038] (0.038] (0.038] (0.038) (0.041) (0.041) (0.039) (0.040) (0.039) (0.037)
Time trends v v v v v v v v v v v v
District fixed effects v v v v v v v v v v v v
Year fixed effects v v v v v v v v v v v v
Controls
Number of observations 3432 3432 3432 3432 3432 3432 3432 3432 3432 3432 3432 3432
Number of districts T8 T8 T8 78 s T8 s T8 78 T8 78 T8
R-squared a 0.768 0.768 0.767 0.768 0.768 0.768 0.767 0.768 0.767 0.767 0.767 0.767
R-squared w 0.781 0.781 0.781 0.781 0.781 0.781 0.78 0.781 0.78 0.78 0.781 0.781

Notes: Values in parentheses denote clustered standard errors at the district level and *** denote statistical significance at the 10%, 5% and 1% level, respectively. District

trends denote a quadratic trend. In columns son used

to construct the index. In colunn 1-3 th

-G the drought index is constructed in the same way as the drought index in the paper. The only difference is the growing
ay- December period is used, whereas anmual data is used. In colomns 7-9, the index is built over the Jun
nal temperature for the construction of the hot degree-days variable we nse an absolute threshold of 30 degrees. As a result, given that
some districts do not experience daily temperatures this high, some districts drop from the sample since in a number of

in columns

September

period, but instead of using the average

districts the harmful degree-days variable is always 0, which
implies the drought index is also equal to 0 and does not vary. Finally, in columns 10-12, instead of multiplying the normalized negative rainfall by the normalized harmful degree-days
variable, these two variables are added. In this specification, the average hot degree-days is based on the average June-September daily temperature between 1956-2009, rather than
the absolute value of 30 degrees
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